Birla Institute of Technology and Science, Pilani 333031 II Semester 2021-22 MATH F244 (Measure & Integration) Comprehensive Exams Part-B (Open Book)

Max. Marks 40	Date: 10/05/2022	Time: 90 Min.

Q.1. Find the limit and justify your steps $\lim_{n \to \infty} \int_0^1 \frac{(nx)^2}{(1+x^2)^n} dx$

Q.2. Let $E \subset \mathbb{R}$ be a measurable subset with m(E) = 1 and let $f \in \mathcal{L}^1(E)$ satisfies $f(x) \ge M > 0$ a. e. on E,

(a) Show that $h(x) = \ln f(x)$, is a measurable function for f(x) > 0.

(b) Show that $g(t) = t - 1 - \ln t$ has minima at t = 1.

(c) Use (b) to show $1 - 1/t \le \ln t \le t - 1$.

(d) Use (c) to show that $h \in \mathcal{L}^1(E)$ and $||h||_1 \le \ln(||f||_1)$. [2+2+3+3+5]

Q.3. Prove or disprove the following:

(a) There exist a non-measurable subset $A \subset \mathbb{R}$ such that the set $B = \{x \in A : x \text{ is irrational}\}$ is measurable.

(b) There exist a non-measurable function $f \ge 0$, s.t. \sqrt{f} is a measurable function.

[4 + 4]

[8]

Q.4. Compute total variation $\{T_{-2}^2(f)\}$, positive variation $\{P_{-2}^2(f)\}$ and negative variation $\{N_{-2}^2(f)\}$ for the function $f(x) = 6x^2 - 4x^3$. [9]