Birla Institute of Technology and Science, Pilani I-Semester 2016-17

(Introduction to Topology) MATH F311 Comprehensive Exams (Close Book)

Max. Marks 50 Date: 9th December 2016 Time: 100 Min. **Q.1.** Define *Path connectedness* and show that "*Topologist sine curve*" is not path connected.

[10]

Q.2. Define *quotient space* X^* for a topological space X. Show that if $f: X \rightarrow Y$ is a quotient map, then the relation $x \sim y$ if and only if f(x) = f(y) is an equivalence relation on X and hence show that $Y \cong X^*$.

Q.3. Critically analyze the following statement: "A topological space is compact if and only if it is limit point compact". [10]

- **Q.4.** Define *first countable space*. Let X is *first countable space* and $A \subseteq X$. Show that if $X \in \overline{A}$, then there is a sequence of points of A converging to x.
- **Q.5.** Define *regular space*. Show that the space \mathbb{R}_K is *Hausdorff*, but not *regular*. [10]

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2015-2016

MATH F311 (Introduction to Topology) Comprehensive Exams (Quiz)-Open Book

Max Marks: 30	Date: 9 th December	2016 Time: 80 Min
ID		Name
Q.1. Consider Sorgenfr	ey plane and if $A = \{(x, y) : x\}$	$^2 + y^2 \le 1$ then find <i>int</i> (A).
Ans:		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
Q.2. Is any <i>compact</i> T_2	space <i>normal</i> ? Justify.	
Ans:		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
-	t Hausdorff space and let f : $ \int_{k=N}^{\infty} X_k$. Is A non-empty? Ju	$: X \rightarrow X$ is <i>continuous</i> . Define $X_1 = X$ and astify.
Ans:		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		

Q.4. Let \mathbb{N} be the set of all <i>natural numbers</i> and \mathbb{B} be the collection of all <i>arithmetic progressions</i> on \mathbb{N} . Then \mathbb{B} is a basis on \mathbb{N} . Let p be a <i>prime number</i> . Show that the set $F_p = \{np: n \in \mathbb{N}\}$ is <i>closed</i> .
Ans:
Q.5. If every <i>continuous</i> function $f: X \to \{0, 1\}$ is <i>constant</i> , then show that X is <i>connected</i> .
Ans:
Q.6. Let $\tau = \{G \subset \mathbb{R}: 0 \notin G\} \cup \{\mathbb{R}\}$ be a topology on \mathbb{R} and $Y = \mathbb{R} \sim \{0\}$. Is (Y, τ_y) <i>Lindelöf?</i> Justify.
Ans:

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2015-2016

MATH F311 (Introduction to Topology) Comprehensive Exams (Quiz)-Open Book

Max Marks: 30	Date: 9 th December 20	16	Time: 80 Min
ID		Name	•••••
Q.1. If every continuous	function $f: X \to \{0, 1\}$ is co	nstant, then show that X is	is connected.
Ans:			
Q.2. Consider <i>Sorgenfre</i>	ey plane and if $A = \{(x, y) : x^2 + (x, y) : x^2 + (x, y) = 0\}$	$y^2 \le 1$ then find int (A).	
Ans:			
Q.3. Is <i>compact</i> T_2 space	e normal? Justify.		
Ans:			
			• • • • • • • • • • • • • • • • • • • •

Q.4. Let $\tau = \{G \subset \mathbb{R}: 0 \notin G\} \cup \{\mathbb{R}\}\$ be a topology on \mathbb{R} and $Y = \mathbb{R} \sim \{0\}$. Is (Y, τ_Y) <i>Lindelöf</i> ? Justify.
Ans:
Q.5. Let <i>X</i> be a <i>compact Hausdorff</i> space and let $f: X \rightarrow X$ is <i>continuous</i> . Define $X_1 = X$ and
$X_{n+1} = f(X_n)$ and set $A = \int_{k \in \mathbb{N}} X_k$. Is A non-empty? Justify.
Ans:
Q.6. Let \mathbb{N} be the set of all <i>natural numbers</i> and \mathbb{B} be the collection of all <i>arithmetic progressions</i> on \mathbb{N} . Then \mathbb{B} is a basis on \mathbb{N} . Let p be a <i>prime number</i> . Show that the set $F_p = \{np: n \in \mathbb{N}\}$ is <i>closed</i> .
Ans: