Birla Institute of Technology and Science, Pilani I-Semester 2016-17 (Introduction to Topology) MATH F311 <u>Mid-Semester Exams (Close Book)</u>

Max. Marks 60	Date: 6 th October 2016	Time: 90 Min.
O 1 L et τ be the col	lection of subsets of N, which contains N, o	and all <i>finite</i> subsets

of N. Is τ a topology on N? Justify. [6] Q.2 Define *basis* for a topology on X. If B is a basis on X, then how would you

define a topology on *X*? Justify. [3+3+6]

Q.3 Let $\tau = \{G \subset \mathbb{R} : x \in G \Leftrightarrow x \in G\}$ be a topology on \mathbb{R} . Then:

(a) Show that \mathbb{Z} and \mathbb{Q} are τ -clopen subsets but \mathbb{N} is neither open nor closed.

(b) Find *closure* of \mathbb{N} . Justify.

Q.4 Suppose *X*, *Y* are topological spaces, and $f: X \rightarrow Y$ is a function.

(a) Define *continuity* of f(x) at a point $x_0 \in X$.

(b) Let *f* is *continuous*. In the space $X \times Y$ (with the product topology) we define a *subspace G* called the "*graph of f*" as $G = \{(x, y) \in X \times Y | y = f(x)\}$. Prove that *G* is *homeomorphic* to *X*. (State clearly whatever theorem(s) you use in doing this proof.) [3+6+4]

Q.5 Let $X = \mathbb{R}^{\omega}$ with the *box topology*. Let $A \subset \mathbb{R}^{\omega}$ consist of the points $(x_1, x_2 \dots)$ with all $x_i > 0$.

(a) Show that $\mathbf{0} = (0, 0 \dots) \in \overline{A}$.

(b) Show that a sequence of points in *A* cannot *converge* to **0**.

(c) What does the *sequence lemma* imply about the *metrizability* of X? [5+5+5]

[9+5]

Solutions

Ans.1 No

Let $\{U_n\}$ where $U_n = \{n\}, \forall n = \{2, 3, 4...\}$ be the countable collection of τ -open subsets of \mathbb{N} , but $\bigcup_{n=2}^{\infty} U_n = \{2, 3, 4...\} \not \equiv \tau$.

Ans.2 Basis: Let *X* be a non-empty set, a collection \mathbb{B} of subsets of *X* (called basis element) such that:

[B1] $\forall x \in X$, there is at least one basis element $B \in \mathbb{B}$ containing x

[B2] If $x \in B_1 \cap B_2$ then $\exists B_3 \in \mathbb{B}$ containing *x* s.t. $x \in B_3 \subset B_1 \cap B_2$.

We define a topology τ on X by defining a subset G of X to be τ -open in X, if $\forall x \in G$, there is a basis element $B \in \mathbb{B}$ s.t. $x \in B \subset G$.

Now we show that τ is a topology on *X*.

 $[T_1] \varphi \in \tau (vacuously!), X \in \tau by [B1]$

[T₂] Let {U_{α}}_{$\alpha \in J$} be an indexed family of τ -open subsets of X and $U = \bigcup_{\alpha \in J} U_{\alpha}$. Let

 $x \in U$, there is an index α , such that $x \in U_{\alpha}$. Since U_{α} is τ -open, there is a basis element $B \in \mathbb{B}$ s.t. $x \in B \subset U_{\alpha}$. Then $x \in B \subset U$ and therefore U is τ -open.

[T₃] Let U_1 and U_2 are τ -open subset of X. Let $x \in U_1 \cap U_2$. Then $\exists B_1$ and B_2 in \mathbb{B} s.t. $x \in B_1 \subset U_1$ and $x \in B_2 \subset U_2$. By [B2], $\exists B_3 \in \mathbb{B}$, s.t. $x \in B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2$. So $U_1 \cap U_2$ is τ -open.

Ans.3 (a) \mathbb{Z} is τ -open as $m \in \mathbb{Z} \Leftrightarrow -m \in \mathbb{Z}$

 \mathbb{Z} is τ -closed as $\mathbb{R} \sim \mathbb{Z}$ is open since $m \in \mathbb{R} \sim \mathbb{Z} \Leftrightarrow -m \in \mathbb{R} \sim \mathbb{Z}$.

Similar argument can be given for \mathbb{Q} .

N is neither τ -open as 1∈ N but -1∉ N. N is nor τ -closed as \mathbb{R} ~N is not τ -open since -1 ∈ \mathbb{R} ~N, but 1 ∉ \mathbb{R} ~N.

(b) τ -closure of $\mathbb{N} = \mathbb{Z} \sim \{0\}$. Since if $m \in \mathbb{Z}^+$, then $m \in \mathbb{N}$ and if $m \in \mathbb{Z}^-$, every τ nbd U of m contains $-m \in \mathbb{N}$ so $U \cap \mathbb{N} \neq \varphi$, so m is limit point of \mathbb{N} . Other than
these numbers no real number is limit point of \mathbb{N} .

Ans.4 (a) f(x) is continuous at a point $x_0 \in X$ if for each nbd V of $f(x_0)$, \exists a nbd U of x_0 s.t. $f(U) \subset V$.

(b) To prove this result, we use following theorems:

Theorem 1: The projection map $\pi: X \times Y \rightarrow X$ is continuous.

Theorem 2: The restriction of a continuous function to a subspace is continuous. (Theorem 18.2 (d))

Define $\varphi: X \to G$ by $\varphi(x) = (x, f(x))$. As the Cartesian product of two continuous functions is continuous, φ is continuous. Check that φ is a bijection [1-1 is because f is a function; surjective is by definition of the "graph of f"]. The function φ^{-1} is just the restriction to G of the projection map $\pi: X \times Y \to X$. π is continuous and the restriction of a continuous function to a subspace is continuous. So $\varphi^{-1}: G \to X$ is continuous.

Ans.5 (a) We need to show that every basis element that contains 0 contains a point of *A* other than 0.

If a basis element $U = (a_1, b_1) \times (a_2, b_2) \times ...$ contains **0**, then all $b_i > 0$. The point $(b_1/2, b_2/2...)$ is contained in $U \cap A$, showing that this set is not empty.

(b) Consider a sequence $x_1 = \langle x_{11}, x_{12} \dots \rangle$, $x_2 = \langle x_{21}, x_{22} \dots \rangle$, $x_3 = \langle x_{31}, x_{32} \dots \rangle$... of points in *A*. Then all $x_{ij} > 0$, and the basis element $U = (-x_{11}, x_{11}) \times (-x_{22}, x_{22}) \times$... is a neighborhood of **0**. But the neighborhood *U* does not contain any of the points x_i of the sequence, so the sequence does not converge to **0**.

(c) The sequence lemma (Lemma 21.2, page 130) says that in a metrizable topological space each point $x \in A^-$ is the limit of some sequence of points in *A*. We have here an example where a point in the closure A^- is NOT the limit of any sequence, so we conclude that $X = \mathbb{R}^{\omega}$ with the box topology is NOT metrizable.