BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI <u>FIRST SEMESTER 2017-2018</u>

MATH F311 (Introduction to Topology) Comprehensive Exams (Part-A)-Close Book

Max Marks: 30	Date: 13th December 2	2017	Time:	60 Min.
ID	••••••	Name	•••••	• • • • • • •
Q.1. Fill in the blanks:				
	$= \{[a, b) : a < b \text{ are real nu} $ topologline.			
(ii) Let $D = \{x \times y : x \text{ is ra}\}$	tional} $\subseteq \mathbb{R}^2$ with standard	topology. Then	<i>Int</i> (<i>D</i>) =	
and $\overline{D} = \dots$				
	(T_0^2) and \mathbb{R} with the topo 	second coun		
(iv) Let X be a topological	space and let $A \subseteq X$, exter	or of A is define	ned as $Ext(A) = X \sim \overline{A}$, the	hen
$Ext\left(A\cup B\right)$	$Ext(A) \cap Ext(B) = \{=/2/\subseteq\}$			
and $Ext(A) \cap A = \dots$				
(v) Let $f: X \to Y$ and $A \subseteq X$	X, then f is an open mapping	if and only if f	(Int(A)) $Int(f(A))$) {=/⊇/⊆}
and f is a closed map if an	and only if $\overline{f(A)}$ $f(\overline{A})$	(=/2/ <u>C</u>	} [2	2+2+2+2+2]
Q.2. Let $\langle x_n \rangle$ be sequents show that $\langle x_n \rangle$ does not	ce of points in a Hausdorff converges to y.	space X conve	rges to a point $x \in X$. Le	et $y \neq x$, then [4]
Ans:				
				• • • • • • • • • • • • • • • • • • • •
				•••••

Q.3. Let $A \subseteq \mathbb{R}^{\omega}$ with box topology, where $A = \{(x_1, x_2,) : x_i > 0, \forall i \in \mathbb{N}\}$, then $0 \in A$. Show that there is no sequence of points of A converging to 0 .
Ange
Ans:
Q.4. Prove or disprove that if a topological space is metrizable, then any coarser topology is also metrizable. [4]
Ans:
Q.5. Prove or disprove that if for all $x, y \in X$ there exists a connected set $C_{x, y} \subseteq X$, with $x, y \in C_{x, y}$. Then X is connected.
Ans:
Q.6. Prove or disprove that $[0, 1]$ is compact as a subspace of \mathbb{R}_K . [4]
Ans:

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2017-2018

MATH F311 (Introduction to Topology) Comprehensive Exams (Part-B)-Open Book

Max Marks: 50 Date: 13th December 2017 Time: 120 Min.

Q.1. Show that $\mathbb{B} = \{[a, b], a < b, a, b \in \mathbb{R}\}$ will not form a basis for any topology on \mathbb{R} .

Q.2. Let (Y, \mathcal{T}) be a non-normal topological space, let $p \notin Y$, let $X = Y \cup \{p\}$, and $\mathcal{T}_X = \mathcal{T} \cup \{X\}$. Show that \mathcal{T}_X is a topological space on X. Is \mathcal{T}_X normal? Justify. [4+1+5]

Q.3. Consider $X = \mathbb{Z}^{\omega}$, (countable product of \mathbb{Z} with itself), where each \mathbb{Z} has subspace topology of standard topology on \mathbb{R} .

- (a) Is X with the box topology metrizable? Can the Uryshon metrization theorem be applied to conclude that X with the box topology is metrizable? State the necessary properties and determine whether or not they hold. [1+1+4]
- (b) Is X with the product topology metrizable? Can the Uryshon metrization theorem be applied to conclude that X with the product topology is metrizable? State the necessary properties and determine whether or not they hold. [1+1+4]
- **Q.4.** Let X be an uncountable set and let $p \in X$, consider the topology $\mathcal{T} = \{X\} \cup \{G \subseteq X : p \notin G\}$ on X. Show that (X, \mathcal{T}) is not separable.
- **Q.5.** Consider \mathbb{R} with co-finite topology, prove or disprove that $\mathbb{Q} \cup \mathbb{P}$ is connected subset, where $\mathbb{P} = \{\alpha : \alpha \text{ is a real root of } a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0, n \in \mathbb{N} \text{ and } a_i \in \mathbb{Z}, \forall i = 0, \dots, n\}.$ [1+6]

Q.6. Let X be an infinite set, let $a, b \in X$, consider the topology $\mathcal{T} = \{X\} \cup \{U \subseteq X : a, b \notin U\}$ on X. Let $A = X \sim \{a\}$ and $B = X \sim \{b\}$, show that A and B are compact subset of X. Is $A \cap B$ compact? Justify.

[4+1+3]