Birla Institute of Technology and Science, Pilani I-Semester 2017-18 (Introduction to Topology) MATH F311 <u>Mid-Semester Exams (Close Book)</u>

Max. Marks 60Date: 14^{th} October 2017Time: 90 Min.Q.1 For each $n \in \mathbb{Z}$, define $B_n = \begin{cases} \{n\} & , \text{ if } n \text{ is odd} \\ \{n-1, n, n+1\}, \text{ if } n \text{ is even} \end{cases}$. Show that $\mathbb{B} = \{B_n : n \in \mathbb{Z}\}$ is a basis for a topology on \mathbb{Z} .[8]

Q.2 Define "*Lexicographic order*" relation on $\mathbb{R} \times \mathbb{R}$. Show that the topology τ generated by this ordering on $\mathbb{R} \times \mathbb{R}$ is same as product topology $\mathbb{R}_d \times \mathbb{R}$. Where \mathbb{R}_d is the set of real numbers with discrete topology and \mathbb{R} is the set of real numbers with usual topology. Compare τ with the standard topology on $\mathbb{R} \times \mathbb{R}$. [14]

Q.3 Define *Hausdorff* space. Show that every *finite set* is *closed* in a *Hausdorff* space. [8]

Q.4 Let $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}\}$ be a topology on $X = \{a, b, c, d\}$, let $f: X \rightarrow X$ be a map defined as: f(a) = b = f(c), f(b) = d, f(d) = c. Check the *continuity* of f at each point of X. [8]

Q.5 Show that the product space \mathbb{R}^{ω} with product topology is *metrizable* with the *metric D*, defined as: $D(x, y) = \sup\left\{\frac{\overline{d}(x_i, y_i)}{i}\right\}, \text{ where } \overline{d}(x, y) \text{ is standard bounded metric on } \mathbb{R}.$ [10]

Q.6 Define *quotient space* X/\sim for a topological space *X*. Show that if $f: X \to Y$ is a *quotient* map, then the relation $x \sim y$ if and only if f(x) = f(y) is an *equivalence* relation on *X* and hence show that $Y \cong X/\sim$. [12]

All the very best