BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI <u>FIRST SEMESTER 2022-2023</u> MATH F311 (Introduction to Topology) <u>Mid Semester Exam (Closed Book)</u>

Max Marks: 50	Date: 4 th November 2022	Time: 90 Min.

Q.1. Define *closure* of a set *A*. Prove or disprove following:

(*a*) If *A* and *B* are open subset of a topological space *X* s.t. $A \cap B = \phi$ then $\overline{A} \cap \overline{B} = \phi$ (*b*) Let *A* be subset of a topological space *X*, then $A \subset (int A)$. [3+4+4]

Q.2. Define *continuity* of a function *f*. Let *X* and *Y* be sets, each with the *co-finite topology*. Prove that a function $f: X \to Y$ is *continuous* if and only if either *f* is a constant function or else $f^{-1}(\{y\})$ is finite for all $y \in Y$. [3+5]

Q.3. Write the statement (No need to prove) of "*The pasting lemma*". Prove or disprove that the function $f:\mathbb{R}_l \to \mathbb{R}_l$ defined as $f(x) = \left(\frac{x^3}{2} - x\right)$ is *continuous*. [3+1+5]

Q.4. Write the statement (No need to prove) of "*The sequence lemma*". Let $X = \mathbb{R}^{\omega}$ with the *box* topology. Let $A \subset \mathbb{R}^{\omega}$ consist of the points $(x_1, x_2, ...)$ with all $x_i > 0$.

(a) Show that $\mathbf{0} = (0, 0, ...)$ belongs to the closure of A.

- (b) Prove or disprove that a sequence of points in A converges to **0**.
- (c) Is \mathbb{R}^{ω} with the box topology metrizable? Justify your answer. [3+3+3+3]

Q.5. Define *standard bounded metric* \overline{d} on a metric space (*X*, *d*). Prove or disprove that the topologies induced by *d* and \overline{d} on *X* are same. [3+1+6]