Birla Institute of Technology & Science, Pilani (Raj.) First Semester 2023-2024, MATH F311 (Introduction to Topology) Mid-Semester Examination (Closed Book)

Time: 90 Minutes Date: October 11, 2023 (Wednesday) Max. Marks: 50

- 1. There are total 5 questions. Start answering each question on a new page. Answer each sub-part of the questions in continuation. While answering, write all the steps with proper justification. Write "END" after the last attempted solution.
- 2. All notations used in the paper have the usual meaning.
- Q 1. State whether the following statements are true or false. Justification is not required. [10]
 - (i) The map $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, defined as $d(x, y) = |e^x e^y|$, is a metric on \mathbb{R} .
 - (ii) Let $X = \{a, b, c, d, e\}$ and $\mathscr{T} = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then \mathscr{T} is a topology on X.
 - (iii) $\mathscr{B} = \{(a, b] : a, b \in \mathbb{R}\}$ is a basis for the lower limit topology on \mathbb{R} .
 - (iv) Consider \mathbb{R} with the standard topology and $Y = [0, 1] \cup \{2\}$. Then [0, 1] is open in the subspace topology of Y.
 - (v) Consider \mathbb{R} with the lower limit topology. Then [a, b) is open.
 - (vi) Consider \mathbb{R} with the lower limit topology. Then [a, b) is closed.
 - (vii) Let X be a discrete topological space and Y be any topological space. Then $f: X \to Y$ is continuous.
 - (viii) Let $\{X_{\alpha}\}_{\alpha \in I}$ be an uncountable collection of topological spaces. Then the box topology and the product topology on $\prod_{\alpha \in I} X_{\alpha}$ are same.
 - (ix) A bijective quotient map is not a homeomorphism in general.
 - (x) The map $f : \mathbb{R} \to [-1, 1]$, defined as $f(x) = \sin x$, is a homeomorphism.
- **Q 2.** (i) Define standard and cofinite topology on \mathbb{R} . [2+2]
 - (ii) Show that the cofinite topology is strictly smaller than the standard topology on \mathbb{R} .[6]
- **Q** 3. Consider \mathbb{R} with the standard topology and $A = (0, 1) \cap \mathbb{Q}$.
 - (i) Find the set of all limit points and the closure of A. [5]
 - (ii) Find the set of all boundary points and the interior of A. [5]
- **Q** 4. (i) Let X be a topological space and Y be a subset of X. Define the subspace topology on Y. [2]
 - (ii) Consider \mathbb{R} with the standard topology. Then what is the subspace topology on \mathbb{N} ? [4]
 - (iii) Suppose that X is a topological space with the discrete topology. Is the subspace topology of a subset $Y \subseteq X$ necessarily the discrete topology on Y? Justify. [4]

Q 5. (i) Let $X = \{a, b, c, d\}$ and $\mathscr{T}_1, \mathscr{T}_2$ be two topologies on X given by $\mathscr{T}_1 = \left\{ X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\} \right\}, \quad \mathscr{T}_2 = \left\{ X, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\} \right\}.$ Consider $f: (X, \mathscr{T}_1) \longrightarrow (X, \mathscr{T}_2)$ defined as f(a) = b, f(b) = c, f(c) = d, f(d) = a.Is f continuous? Justify. [3](ii) Define homeomorphism between two topological spaces. [2][5]

(iii) Show that (0, 1) and $(0, \infty)$ are homeomorphic.