Birla Institute of Technology & Science, Pilani (Raj.) First Semester 2023-2024, MATH F311 (Introduction to Topology)

Comprehensive Examination (Closed Book)

Time: 180 MinutesDate: December 11, 2023 (Monday)Max. Marks: 90

- 1. There are total 6 questions. Start answering each question on a new page. Answer each sub-part of the questions in continuation. While answering, write all the steps with proper justification. Write "END" after the last attempted solution.
- 2. All notations used in the paper are standard and have their usual meaning.
- Q 1. State whether the following statements are true or false. Justification is not required. [10]
 - (i) Consider \mathbb{R} with the standard topology. Then the subspace topology on $Y = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ is discrete.
 - (ii) A homeomorphism is an open map.
 - (iii) In every topological space, a convergent sequence has a unique limit.
 - (iv) \mathbb{Q} with the cofinite topology is connected.
 - (v) Every subspace of a compact space is compact.
 - (vi) A subspace of a metric space is compact if and only if it is closed and bounded.
 - (vii) The one point compactification of \mathbb{R} is homeomorphic to the sphere.
 - (viii) The product of regular spaces is regular.
 - (ix) The product of normal spaces is normal.
 - (x) A subspace of a Lindelöf space is Lindelöf.
- **Q** 2. Answer the following questions. Justification is not required. [10]
 - (i) What is the co-countable topology on \mathbb{Q} ?
 - (ii) Consider \mathbb{R} with the lower limit topology. Let $A = (0, 1) \cap \mathbb{Q}$. Then what is \overline{A} and A'?
 - (iii) Let \mathbb{R}_{ℓ} and \mathbb{R}_s denote the real line with the lower limit topology and the standard topology, respectively. Let $f : \mathbb{R}_s \to \mathbb{R}_{\ell}$ be defined as f(x) = x for all $x \in \mathbb{R}$. Is f continuous?
 - (iv) Consider [0, 1] with the discrete topology. What is the limit of the sequence $(1/n)_{n>1}$?
 - (v) How many components does a topologist's sine curve have? How many path components does a topologist's sine curve have?
 - (vi) State Tychonoff's theorem.
 - (vii) Let X be a finite set. If a topology on X makes it Hausdorff, then what is the topology on X?
 - (viii) State all the countability axioms satisfied by the real line with the lower limit topology.

Q 3.	(i)	Show that the collection $\mathscr{B} = \left\{ [a, b) : a < b \text{ and } a, b \in \mathbb{Q} \right\}$ is a basis. Is the top	ology
		generated by \mathscr{B} equal to the lower limit topology on \mathbb{R} ? Justify.	[10]
	(ii)	Consider \mathbb{R} with the standard topology. Give an example of a function $f : \mathbb{R}$ which is continuous at precisely one point. Justify with details.	$ ightarrow \mathbb{R}$ [8]
Q 4.	(i)	Define connected space.	[3]
	(ii)	Let X, Y be topological spaces and $p: X \to Y$ be a quotient map. Show that it set $p^{-1}(\{y\})$ is connected, and if Y is connected, then X is connected.	f each [14]
Q 5.	(i)	Define compact space and define Hausdorff space.	[3+3]
	(ii)	Prove that if Y is a compact subspace of the Hausdorff space X and $x_0 \notin Y$, then exist disjoint open sets U and V containing x_0 and Y, respectively.	there [12]
Q 6.	(i)	Define dense subset, separable space and normal space. [2+	3+3]
			-
	(ii)	Show that an open subspace of a separable space is separable.	[3]

— END —