Part-A: Closed book	Max Marks: 20	Max Time: 40 mins	SELA
Name:		ID No.:	

Note: Write only the correct options (A, B, C or D in CAPITAL LETTER ONLY) of the given questions in the box provided below. Each correct answer carries 2 marks and incorrect answer carries -0.5 mark. Over writing/cutting will be treated as unattempted.

Q. No.	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
Answer										

A1. Let $u_1(t)$ and $u_2(t)$ are the solutions of $u'' + ku' + w^2u = 0$, k & w are constants. Then

 $v = u_1^2 \left(rac{u_2}{u_1}
ight)'$ is a solution of the differential equation

(A)
$$v' - kv = 0$$

(B) $v' + w^2 v = 0$
(C) $v' - w^2 v = 0$
(D) None of these

A2. All nonnegative continuous function u(t) on $0 \le t \le 1$ satisfying

$$u(t) \leq \int_0^t u(s)ds, \ 0 \leq t \leq 1 \text{ are given by}$$
(A) $u(t) = e^t$
(B) $u(t) = e^{-t}$
(C) $u(t) = 0$
(B) None of these

A3. For the differential equation $u'' + \frac{6}{t}u' + \frac{6}{t^2}u = 0$, which of the following statements is true?

- (A) $u_1(t) = \frac{1}{t^2}$, $u_2(t) = \frac{1}{t^3}$ form a fundamental system of solutions
- (B) $u_1(t) = \frac{1}{t^2}$, $u_2(t) = \frac{1}{t^3}$ can not form a fundamental system of solutions
- (C) $u_1(t) = t^2$, $u_2(t) = t^3$ form a fundamental system of solutions
- (D) None of these

A4. Let u(t) be any nontrivial solution of u''' + 2u'' + 3u' + 4u = 0. Then which of the following statements is true?

(A) $\lim_{t \to \infty} u(t) = 0$ (B) $\lim_{t \to \infty} u(t) = \infty$ (C) $\lim_{t \to \infty} u(t) = c, \quad c \neq 0$ (D) None of these A5. Let u(t) be any nontrivial solution of the differential equation $u'' + e^t u = 0$ on $[0, \infty)$. Then which of the following statements is true?

(A) u(t) is unbounded (B) u(t) is bounded (C) u(t) is bounded in [0, 1) but unbounded on $[1, \infty)$ (D) none of these

A6. The real equilibrium point(s) of the system

$$x'_1 = x_1^3 + x_2$$
, $x'_2 = x_1 + x_2^3$ is(are)

- (A) (0, 0) only
- (C) (0,0), (1,-1) and (-1,1)

(B) (0,0), (1,1) and (-1,-1)(D) not having any real equilibrium point

A7. Let

$$\Phi(t) = \begin{pmatrix} 1 & t^2 & t^4 \\ 0 & e^t & e^{-t} \\ 0 & 0 & 0 \end{pmatrix}, \ \phi_1(t) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \phi_2(t) = \begin{pmatrix} t^2 \\ e^t \\ 0 \end{pmatrix}, \ \phi_3(t) = \begin{pmatrix} t^4 \\ e^{-t} \\ 0 \end{pmatrix}, \ a < t < b.$$

Then which of the following statements is true?

(A) $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ are linearly independent on (a, b)

- (B) $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ are linearly dependent on (a, b)
- (C) Linearly dependence/independence can not be determined as $\det \Phi(t) = 0$

(D) None of these

A8. The zero solution of the IVP: $u' + 2u + e^t u^2 = 0$, $u(0) = u_0 > 0$

(A) stable but not asymptotically stable (B) asymptotically stable (D) None of these

(C) unstable

A9. Let $y_1(t), y_2(t), \dots, y_n(t)$ be any solutions of the differential equation

$$y^{(n)} + a_2(t)y^{(n-2)} + a_3(t)y^{(n-3)} + \dots + a_{n-1}(t)y' + a_n(t)y = 0,$$

and W(t) be the Wronskian of $y_1(t), y_2(t), \dots, y_n(t)$ with $W(t_0) = 1$ Then which of the following statement is true?

(A) $W(t)$ is an increasing function of t	(B) $W(t)$ is a decreasing function of t
(C) $W(t)$ is always a constant	(D) None of these

A10. The equilibrium point (0, 0) of the system of differential equations

 $x_1' = -x_1^3 - 4x_2$, $x_2' = 3x_1 - x_2^3$ is

(A) a saddle point	(B) unstable spiral
(C) asymptotically stable	(D) None of these

END OF PART A

Part-A: Closed book	Max Marks: 20	Max Time: 40 mins	SET B
Name:		ID No.:	

Note: Write only the correct options (A, B, C or D in CAPITAL LETTER ONLY) of the given questions in the box provided below. Each correct answer carries 2 marks and incorrect answer carries -0.5 mark. Over writing/cutting will be treated as unattempted.

Q. No.	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
Answer										

A1. Let $y_1(t), y_2(t), \dots, y_n(t)$ be any solutions of the differential equation

$$y^{(n)} + a_2(t)y^{(n-2)} + a_3(t)y^{(n-3)} + \dots + a_{n-1}(t)y' + a_n(t)y = 0,$$

and W(t) be the Wronskian of $y_1(t), y_2(t), ..., y_n(t)$ with $W(t_0) = 1$ Then which of the following statement is true?

(A) $W(t)$ is an increasing function of t	(B) $W(t)$ is a decreasing function of t
(C) $W(t)$ is always a constant	(D) None of these

A2. Let $u_1(t)$ and $u_2(t)$ are the solutions of $u'' + ku' + w^2u = 0$, k & w are constants. Then

 $v = u_1^2 \left(rac{u_2}{u_1}
ight)'$ is a solution of the differential equation

(A) v' - kv = 0(B) $v' + w^2v = 0$ (C) $v' - w^2v = 0$ (D) None of these

A3. All nonnegative continuous function u(t) on $0 \le t \le 1$ satisfying

$$u(t) \leq \int_0^t u(s) ds, \quad 0 \leq t \leq 1 \text{ are given by}$$

A) $u(t) = e^t$

(B) $u(t) = e^{-t}$

(D) None of these

A4. For the differential equation $u'' + \frac{6}{t}u' + \frac{6}{t^2}u = 0$, which of the following statements is true? (A) $u_1(t) = \frac{1}{t^2}$, $u_2(t) = \frac{1}{t^3}$ form a fundamental system of solutions

- (B) $u_1(t) = \frac{1}{t^2}$, $u_2(t) = \frac{1}{t^3}$ can not form a fundamental system of solutions
- (C) $u_1(t) = t^2$, $u_2(t) = t^3$ form a fundamental system of solutions
- (D) None of these

A5. Let u(t) be any nontrivial solution of the differential equation $u'' + e^t u = 0$ on $[0, \infty)$. Then which of the following statements is true?

(A) $u(t)$ is unbounded	(
(C) $u(t)$ is bounded in [0, 1) but unbounded on $[1, \infty)$	

(B) u(t) is bounded (D) None of these

A6. The equilibrium point (0, 0) of the system of differential equations

 $x'_1 = -x_1^3 - 4x_2,$ $x'_2 = 3x_1 - x_2^3$ is (A) a saddle point (B) unstable spiral (C) asymptotically stable (D) None of these

A7. Let u(t) be any nontrivial solution of u''' + 2u'' + 3u' + 4u = 0. Then which of the following statements is true?

(A) $\lim_{t\to\infty} u(t) = 0$ (B) $\lim_{t\to\infty} u(t) = \infty$ (C) $\lim_{t\to\infty} u(t) = c, \ c \neq 0$ (D) None of these

A8. The zero solution of the IVP: $u' + 2u + e^t u^2 = 0$, $u(0) = u_0 > 0$

(A) stable but not asymptotically stable(B) asymptotically stable(C) unstable(D) None of these

A9. The real equilibrium point(s) of the system

$$x'_1 = x_1^3 + x_2$$
, $x'_2 = x_1 + x_2^3$ is(are)

(A) (0, 0) only
(C) (0, 0), (1, −1) and (−1, 1)

(B) (0,0), (1,1) and (-1,-1)
(D) not having any real equilibrium point

A10. Let

$$\Phi(t) = \begin{pmatrix} 1 & t^2 & t^4 \\ 0 & e^t & e^{-t} \\ 0 & 0 & 0 \end{pmatrix}, \quad \phi_1(t) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \phi_2(t) = \begin{pmatrix} t^2 \\ e^t \\ 0 \end{pmatrix}, \quad \phi_3(t) = \begin{pmatrix} t^4 \\ e^{-t} \\ 0 \end{pmatrix}, \quad a < t < b.$$

Then which of the following statements is true?

(A) $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ are linearly independent on (a, b)(B) $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ are linearly dependent on (a, b)

(C) Linearly dependence/independence can not be determined as $\det \Phi(t) = 0$

(D) None of these

END OF PART A

Part-B: Closed book	Max Marks: 30	Max Time: 60 mins
Note: 1. Start answer of each q	uestion on a fresh page.	
2. Write Part B on the lef	t right top corner of the answer book	
Write END in the last v rough work.	when you have finished your answer,	and strike off the blank pages and

B1. Let a(t) be a continuously differentiable function for $t \in [0, \infty)$. If $a(t) \to \infty$ monotonically as

 $t \to \infty$, then show that all solutions of u'' + a(t)u = 0 are bounded on $[0, \infty)$. [10]

[10]

[10]

B2. Let g(t) and h(t) be continuous functions on the interval $J = [t_0, t_0 + a]$, where a is fixed real

number. Then show that the IVP:

$$u'' + g(t)u' + h(t)u = 0, \ u(t_0) = u_0, \ u'(t_0) = u_1$$

has a unique solution on J.

B3.Let f(t) be continuous on $0 \le t < \infty$ and $f(t) \rightarrow c \text{ as } t \rightarrow \infty$ with c > 0. Using the Sturm

Comparison Theorem, show that all nontrivial solutions of u'' + f(t)u = 0 are oscillatory on

$$0 \leq t < \infty$$
.

END OF PART B

Part-C: Open Book	Max Marks: 40	Max Time: 80 mins

Note: 1. Start answer of each question on a fresh page.

2. Write Part B on the left right top corner of the answer book.

3. Write END in the last when completed all answers and strike off the blank pages & rough work.

C1. Find all possible limit cycles and discuss it stability behavior for the following system of differential equations:

$$x'_{1} = x_{2} - x_{1}(x_{1}^{2} + x_{2}^{2} - 36)^{2},$$

$$x'_{2} = -x_{1} - x_{2}(x_{1}^{2} + x_{2}^{2} - 36)^{2}.$$
[8]

C2. Consider the following resource-consumer 3D system:

$$x'_{1} = 5x_{1} - x_{1}^{2} - x_{1}x_{2},$$

$$x'_{2} = -2x_{2} + 2x_{1}x_{2} - x_{2}x_{3},$$

$$x'_{3} = -6x_{3} + 3x_{2}x_{3}.$$

For the above system, answer the following questions:

(i) Find a positive equilibrium (x_1^*, x_2^*, x_3^*) .

- [2]
- (ii) Linearize the given system of equations around the positive equilibrium (x_1^*, x_2^*, x_3^*) obtained in the previous step (i). [4]
- (iii) Test the stability behavior of the positive equilibrium (x_1^*, x_2^*, x_3^*) for the linear model obtained in step (ii) using the Routh-Hurwitz criteria. [6]
- C3. For the following system of differential equations

$$x_1' = 12x_1\left(1 - \frac{x_1}{2}\right) - 6x_1x_2$$
,

$$x_2' = 9x_2\left(1 - \frac{2x_2}{3}\right) - 3x_1x_2 ,$$

answer the following questions:

- (i) Find all possible equilibrium points of the given system of equations. [4]
- (ii) Test the stability behavior of each of the equilibrium points by computing the Jacobian matrix corresponding to each equilibrium point.
 [8]
- (iii) Let (x_1^*, x_2^*) be the positive (non-zero) equilibrium point of the given system and consider the positive definite function around the positive equilibrium: $V(x_1, x_2) = (x_1 - x_1^* - x_1^* \ln x_1) + \alpha(x_2 - x_2^* - x_2^* \ln x_2)$, where α is any positive real constant. Write $\frac{dV}{dt}$ in terms of a quadratic equation, then using the Sylvester criteria find a condition on α which makes $\frac{dV}{dt}$ to be negative definite in the interior of the positive quadrant of the x_1x_2 -plane, and hence prove that (x_1^*, x_2^*) is non-linearly asymptotically stable if α satisfies a condition obtained in the previous step. [8]