BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 First Semester 2016-17
 MATH F 312 : Ordinary Differential Equations
 Mid Semester Test (Closed Book)

Duration : 90 mins
Date : 08/10/2016
MM : 70

Q1. Express the following system of coupled second order scaler differential equations in the vectormatrix form:

$$
\begin{align*}
& u^{\prime \prime}-u=v^{\prime} e^{t} \\
& v^{\prime \prime}-v=u^{\prime} e^{-t} \tag{8}
\end{align*}
$$

Q2. State and prove Grownwall-Reid-Bellman Inequality.
Q3. Find all continuous (but not necessarily differentiable) functions $u(t)$ such that

$$
\begin{equation*}
u^{2}(t) \leq \int_{0}^{t} u(s) d s, \quad t \geq 0 \tag{10}
\end{equation*}
$$

Q4. Show that all the solutions of the differential equation

$$
\begin{equation*}
u^{\prime \prime}+\left(1+\frac{2}{t\left(t^{2}+1\right)}\right) u=0 \quad \text { for } t>0 \tag{10}
\end{equation*}
$$

are bounded on $(0, \infty)$.

Q5. Find a fundamental matrix $\Phi(t)$ of the following system of differential equations:

$$
\begin{align*}
& x_{1}^{\prime}=x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} . \tag{10}
\end{align*}
$$

Q6. Determine the stability/instability/asymptotic stability of the zero solution of the system of differential equations

$$
\begin{align*}
& x_{1}^{\prime}=2 x_{1}-4 x_{2}, \\
& x_{2}^{\prime}=7 x_{1}-9 x_{2} . \tag{10}
\end{align*}
$$

Q7. Let all the solutions of the vector differential equation

$$
x^{\prime}=A(t) x,
$$

be bounded on $[0, \infty)$, where $A(t)$ is $n \times n$ continuopus matrix on $[0, \infty)$ and x is n-vector. Then show that all solutions of the above differential equation are stable.

