Birla Institute of Technology and Science Pilani First Semester 2022-23 Ordinary Differential Equation (MATH F312) Mid-Semester Examination (Closed Book) Date: 05-11-2022 Max Marks: 60

Q1. Let g(t, u) be a continuous function and satisfies Lipschitz condition in a closed and bounded region $R = \{(t, u) | |t - t_0| \le a \text{ and } |u - u_0| \le b\}$, then prove that there exist a unique solution u(t) to the initial value problem $u' = g(t, u), u(t_0) = u_0$ defined on the interval $|t - t_0| \le h$, where $h = \min(a, b/M)$ and $|g(t, u)| \le M$ on R. [18]

Q2. Let $c \ge 0$ be a constant and $u(t) \ge 0$, $v(t) \ge 0$, be continuous functions on some interval $[t_0, t_0 + a]$, a > 0 satisfying

$$u(t) \le c + \int_{t_0}^t u(s)v(s)ds, \ t \in [t_0, t_0 + a].$$

Then prove that the inequality

Time: 90 minutes

 $u(t) \le c \exp\left(\int_{t_0}^t v(s)ds\right) \quad t \in [t_0, t_0 + a].$ [8]

[12]

holds.

Q3. Find the fundamental matrix for the system

$$\mathbf{x}' = \begin{bmatrix} 1 & 2 & -3 \\ 1 & 1 & 2 \\ 1 & -1 & 4 \end{bmatrix} \mathbf{x}.$$

Q4. Prove or disprove that for all the solutions $\mathbf{x}(t)$ of the system

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -10 & -11 & -5 \end{bmatrix} \mathbf{x}.$$
$$\lim_{t \to \infty} \|\mathbf{x}(t)\| = 0.$$
 [5]

Q5. Let Φ be a fundamental matrix for the system $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$, where $\mathbf{A}(t)$ is a continuous matrix and C is a constant nonsingular matrix. Prove that ΦC is also a fundamental matrix of the above system and further prove that any fundamental matrix of this system will be of the form ΦD , where D is a constant nonsingular matrix (The order of \mathbf{A}, Φ, C, D are n). [8]

Q6. Using Picard's iterative method, find first three (in addition to $\mathbf{x_0} = (1, -1)$) non-zero approximations to the IVP [9]

$$x'_{1} = t + x_{2}$$

$$x'_{2} = t + x_{1}$$

$$x_{1}(0) = 1, \ x_{2}(0) = -1.$$

*****END*****