Birla Institute of Technology and Science Pilani
 First Semester 2022-23
 Ordinary Differential Equation (MATH F312) Mid-Semester Examination (Closed Book)
 Date: 05-11-2022

Time: 90 minutes
Max Marks: 60
Q1. Let $g(t, u)$ be a continuous function and satisfies Lipschitz condition in a closed and bounded region $R=\left\{(t, u)| | t-t_{0} \mid \leq a\right.$ and $\left.\left|u-u_{0}\right| \leq b\right\}$, then prove that there exist a unique solution $u(t)$ to the initial value problem $u^{\prime}=g(t, u), u\left(t_{0}\right)=u_{0}$ defined on the interval $\left|t-t_{0}\right| \leq h$, where $h=$ $\min (a, b / M)$ and $|g(t, u)| \leq M$ on R.

Q2. Let $c \geq 0$ be a constant and $u(t) \geq 0, v(t) \geq 0$, be continuous functions on some interval $\left[t_{0}, t_{0}+a\right], a>0$ satisfying

$$
u(t) \leq c+\int_{t_{0}}^{t} u(s) v(s) d s, \quad t \in\left[t_{0}, t_{0}+a\right] .
$$

Then prove that the inequality

$$
u(t) \leq c \exp \left(\int_{t_{0}}^{t} v(s) d s\right) \quad t \in\left[t_{0}, t_{0}+a\right] .
$$

holds.
Q3. Find the fundamental matrix for the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
1 & 2 & -3 \\
1 & 1 & 2 \\
1 & -1 & 4
\end{array}\right] \mathbf{x}
$$

Q4. Prove or disprove that for all the solutions $\mathbf{x}(t)$ of the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 0 \tag{5}\\
0 & 1 & 1 \\
-10 & -11 & -5
\end{array}\right] \mathbf{x} .
$$

$\lim _{t \rightarrow \infty}\|\mathbf{x}(t)\|=0$.
Q5. Let Φ be a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A}(t) \mathbf{x}$, where $\mathbf{A}(t)$ is a continuous matrix and C is a constant nonsingular matrix. Prove that ΦC is also a fundamental matrix of the above system and further prove that any fundamental matrix of this system will be of the form ΦD, where D is a constant nonsingular matrix (The order of $\mathbf{A}, \Phi, \mathrm{C}, \mathrm{D}$ are n).

Q6. Using Picard's iterative method, find first three (in addition to $\mathbf{x}_{\mathbf{0}}=(1,-1)$) non-zero approximations to the IVP

$$
\begin{gathered}
x_{1}^{\prime}=t+x_{2} \\
x_{2}^{\prime}=t+x_{1} \\
x_{1}(0)=1, \quad x_{2}(0)=-1 .
\end{gathered}
$$

