Birla Institute of Technology and Science Pilani
 First Semester 2022-23
 Ordinary Differential Equation (MATH F312) Comprehensive Examination (Close Book)

Time: 100 minutes
Q1. (i) Define stability and asymptotic stability of any solution $x(t)=x\left(t, t_{0}, x_{0}\right)$, of the system $\mathbf{x}^{\prime}=\mathbf{F}(t, \mathbf{x})$
(ii) Prove that if all the characteristic roots of the $n \times n$ constant matrix A have negative real parts, then every solution of the system $\mathbf{x}^{\prime}=\mathrm{Ax}$, is asymptotically stable.
(iii) Prove that the zero solution of $u^{\prime}=-\alpha u, \alpha>0$ is asymptotically stable.

Q2. Let $a(t)$ be a continuously differentiable, positive function on $[0, \infty)$. Then prove that all the solutions of $u^{\prime \prime}+a(t) u=0$, are bounded on $[0, \infty)$ provided $a(t) \rightarrow \infty$ monotonically as $t \rightarrow \infty$.

Q3. (i) Prove that the nontrivial solutions of $u^{\prime \prime}+(1+\phi(t)) u=0$, where $\phi(t) \rightarrow 0$ as $t \rightarrow \infty$ are oscillatory.
(ii) Prove or disprove that the differential equation $u^{\prime \prime}+\frac{1}{4 t^{2}} u=0$, is nonoscillatory.

Q4. For the system

$$
\begin{gathered}
x_{1}^{\prime}=\left(x_{1}-1\right)\left(x_{1}+x_{2}\right) \\
x_{2}^{\prime}=x_{2}-x_{1}^{2}
\end{gathered}
$$

(i) Find all the critical points.
(ii) Use linearization approach to conclude whether the critical points are stable, unstable or asymptotically stable.

Q5. Using the Krasovskii's method, prove that the zero solution of the system

$$
\begin{gather*}
x_{1}^{\prime}=-x_{1} \\
x_{2}^{\prime}=x_{1}-x_{2}-x_{2}^{3}, \tag{5}
\end{gather*}
$$

is asymptotically stable.
Q6. Find all possible limit cycles and discuss its stability behavior for the following system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2}+x_{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}-2\right) \\
& x_{2}^{\prime}=-x_{1}+x_{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}-2\right)
\end{aligned}
$$

Birla Institute of Technology and Science Pilani
 First Semester 2022-23
 Ordinary Differential Equation (MATH F312) Comprehensive Examination (Open Book)
 Date: 30-12-2022

Q1. Using the Gronwall-Reid-Bellman inequality, prove the existence of a unique solution on $J=\left[t_{0}, t_{0}+a\right]$, to the initial value problem

$$
u^{\prime \prime \prime}+g(t) u^{\prime \prime}+h(t) u^{\prime}=0, \quad u\left(t_{0}\right)=u_{0}, u^{\prime}\left(t_{0}\right)=u_{1}, u^{\prime \prime}\left(t_{0}\right)=u_{2},
$$

where, $g(t), h(t)$ are continuous functions on J and a is a fixed positive real number.
Q2. Solve the differential equation $y^{\prime \prime \prime}-3 y^{\prime}-2 y=3 t, t \geq 0=t_{0}$ by using the wronskian approach.
Q3. For the system $(t>0)$

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+\left(2+e^{-t}\right) x_{2}+x_{3} \\
x_{2}^{\prime}=\frac{1}{t} x_{1} & -\left(2+\frac{3}{t^{2}}\right) x_{2}+\frac{\left(2 t+3 t^{2} e^{-t}\right)}{t} x_{3} \\
x_{3}^{\prime} & =\frac{1+2 t}{t^{2}} x_{2}+\left(\frac{1}{t^{2}}-1\right) x_{3}
\end{aligned}
$$

prove or disprove that for all the solutions $\mathbf{x}(t), \lim _{t \rightarrow \infty}\|\mathbf{x}(t)\|=0$. Use $\|A\|=\sum\left|a_{i j}\right|, 1 \leq i, j \leq n$ wherever needed.

Q4. Prove (without solving the equation) that there exist a unique solution to the initial value problem,

$$
u^{\prime}=u^{2}-\cos ^{2} t, u(0)=0,
$$

and also find the interval of existence of solution given that $R=\{(t, u) \mid 0 \leq t \leq a$ and $|u| \leq b\}$, where $a>1, b>0$.

Q5. Find a fundamental matrix for the system

$$
\begin{gather*}
x_{1}^{\prime}=x_{1}+x_{2} \tag{8}\\
x_{2}^{\prime}=4 x_{1}-2 x_{2}
\end{gather*}
$$

and hence find a fundamental matrix for the system

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}-4 x_{2} \\
& x_{2}^{\prime}=-x_{1}+2 x_{2} .
\end{aligned}
$$

