Birla Institute of Technology and Science Pilani First Semester 2022-23 Ordinary Differential Equation (MATH F312) Comprehensive Examination (Close Book) Date: 30-12-2022

- Q1. (i) Define stability and asymptotic stability of any solution x(t) = x(t, t₀, x₀), of the system x' = F(t, x) [2]
 (ii) Prove that if all the characteristic roots of the n × n constant matrix A have negative real parts, then every solution of the system x' = Ax, is asymptotically stable. [5]
 - then every solution of the system $\mathbf{x}' = A\mathbf{x}$, is asymptotically stable. [5] (iii) Prove that the zero solution of $u' = -\alpha u$, $\alpha > 0$ is asymptotically stable. [3]
- **Q2.** Let a(t) be a continuously differentiable, positive function on $[0, \infty)$. Then prove that all the solutions of u'' + a(t)u = 0, are bounded on $[0, \infty)$ provided $a(t) \to \infty$ monotonically as $t \to \infty$. [8]

Q3. (i) Prove that the nontrivial solutions of $u'' + (1 + \phi(t))u = 0$, where $\phi(t) \to 0$ as $t \to \infty$ are oscillatory. [4]

(ii) Prove or disprove that the differential equation $u'' + \frac{1}{4t^2}u = 0$, is nonoscillatory. [3]

Q4. For the system

Time: 100 minutes

$$x'_1 = (x_1 - 1)(x_1 + x_2)$$
$$x'_2 = x_2 - x_1^2$$

- (i) Find all the critical points.
- (ii) Use linearization approach to conclude whether the critical points are stable, unstable or asymptotically stable.
- Q5. Using the Krasovskii's method, prove that the zero solution of the system

Max Marks: 50

[2+9]

is asymptotically stable.

Q6. Find all possible limit cycles and discuss its stability behavior for the following system of differential equations [9]

$$x'_{1} = x_{2} + x_{2}(x_{1}^{2} + x_{2}^{2} - 1)(x_{1}^{2} + x_{2}^{2} - 2)$$

$$x'_{2} = -x_{1} + x_{2}(x_{1}^{2} + x_{2}^{2} - 1)(x_{1}^{2} + x_{2}^{2} - 2)$$

*****END*****

Birla Institute of Technology and Science Pilani First Semester 2022-23 Ordinary Differential Equation (MATH F312) Comprehensive Examination (Open Book) Date: 30-12-2022 Max Marks: 40

Time: 80 minutes

Q1. Using the Gronwall-Reid-Bellman inequality, prove the existence of a unique solution on $J = [t_0, t_0 + a]$, to the initial value problem $u''' + g(t)u'' + h(t)u' = 0, \qquad u(t_0) = u_0, u'(t_0) = u_1, u''(t_0) = u_2,$

where, g(t), h(t) are continuous functions on J and a is a fixed positive real number. [8]

Q2. Solve the differential equation y''' - 3y' - 2y = 3t, $t \ge 0 = t_0$ by using the wronskian approach. [8]

Q3. For the system (t > 0)

$$x_{1}' = -x_{1} + (2 + e^{-t})x_{2} + x_{3}$$

$$x_{2}' = \frac{1}{t}x_{1} - \left(2 + \frac{3}{t^{2}}\right)x_{2} + \frac{(2t + 3t^{2}e^{-t})}{t}x_{3}$$

$$x_{3}' = \frac{1 + 2t}{t^{2}}x_{2} + \left(\frac{1}{t^{2}} - 1\right)x_{3},$$

prove or disprove that for all the solutions $\mathbf{x}(t)$, $\lim_{t \to \infty} ||\mathbf{x}(t)|| = 0$. Use $||A|| = \sum |a_{ij}|$, $1 \le i, j \le n$ wherever needed. [8]

Q4. Prove (without solving the equation) that there exist a unique solution to the initial value problem, $u' = u^2 - \cos^2 t$, u(0) = 0, and also find the interval of existence of solution given that $R = \{(t, u) | 0 \le t \le a \text{ and } |u| \le b\}$, where a > 1, b > 0. [8]

[8]

Q5. Find a fundamental matrix for the system

$$x'_{1} = x_{1} + x_{2}$$

$$x'_{2} = 4x_{1} - 2x_{2}$$

and hence find a fundamental matrix for the system

$$x'_{1} = -x_{1} - 4x_{2}$$

$$x'_{2} = -x_{1} + 2x_{2}$$

*****END*****