Birla Institute of Technology and Science Pilani First Semester 2023-24 Ordinary Differential Equation (MATH F312) Comprehensive Examination (Close Book) Date: 07-12-2023

Time: 100 minutes

Q1. (i) Prove that all the solutions of $\mathbf{x}' = A(t)\mathbf{x}$ will be stable iff they are bounded. Here, A(t) is an $n \times n$ continuous matrix on $[0, \infty)$. [8]

(ii) Prove or disprove that the zero solution of

$$\mathbf{x}'(t) = \begin{bmatrix} -1 & e^{2t} \\ 0 & -3 \end{bmatrix} \mathbf{x}(t).$$

$$\mathbf{x}_1 + |\mathbf{x}_2|.$$
 [6]

Max Marks: 50

is stable on $[0, \infty)$. Use $||(x_1, x_2)|| = |x_1| + |x_2|$

Q2. Let b(t) be a continuously differentiable function on $[0, \infty)$. Then prove that all the solutions of u'' + (1 + b(t))u = 0, are bounded on $[0, \infty)$ provided $b(t) \to 0$ as $t \to \infty$ and $\int_0^\infty |b'(s)| < \infty$. Furthermore, discuss the boundedness of solutions of $u'' + (1 + \frac{1}{(t+1)^2} + \frac{1}{(t+1)})u = 0.$ [12]

Q3. (i) Let a(t), b(t) be a continuous real valued function on $[t_0, \infty)$ such that $a(t) \le b(t)$ on $[t_0, \infty)$. Prove that if all the non-trivial solutions of u'' + a(t)u = 0, are oscillatory on $[t_0, \infty)$, then all the non-trivial solutions of v'' + b(t)v = 0, will be oscillatory on $[t_0, \infty)$. [8] (ii) Prove or disprove that any nontrivial solution of differential equation $u'' - \frac{1}{t^4}u = 0$, vanish more than once in (1, 4). [3]

Q4. Prove or disprove that for all the solutions $\mathbf{x}(t)$ of the system

$$\mathbf{x}' = \begin{bmatrix} -5 & 4 & 0\\ 0 & 0 & 3\\ -12 & 8 & -6 \end{bmatrix} \mathbf{x},$$
$$\lim_{t \to \infty} \|\mathbf{x}(t)\| = 0.$$
 [5]

Q5. If all the characteristic roots of the characteristic polynomial of the differential equation

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$

 $y + a_1 y + \cdots + a_n y = 0$, where a_1, a_2, \dots, a_n are the real constants, have negative real parts, then prove that for any solution y(t)of above equation, there exist positive numbers α, M such that $|y(t)| \le Me^{-\alpha t}$, $t \ge 0$. [8]

*****END*****

Birla Institute of Technology and Science Pilani First Semester 2023-24 **Ordinary Differential Equation (MATH F312) Comprehensive Examination (Open Book)** Date: 07-12-2023

Time: 80 minutes

Q1. Using the Gronwall-Reid-Bellman inequality, prove the existence of a unique solution on $J = [t_0, t_0 + a]$, to the initial value problem *(*.) . . .

.

$$\mathbf{x}^{\prime}(t) = A(t)\mathbf{x}(t) + B(t), \quad \mathbf{x}(t_0) = \mathbf{x}_0,$$

where, $A(t), B(t)$ are continuous matrices of order $n \times n$ and $n \times 1$ respectively on J and $\mathbf{x}(t), \mathbf{x}_0$ are column vectors. [4]

Q2. Compute the Picard's first three iterations for the IVP u' = 1 + tu, u(0) = 2. [6]

Q3. Using a suitable Liapunov function of the form $ax_1^2 + bx_2^2$, for appropriate choices of a, b, to prove the following:

(i) zero solution for the system

$$x_{1}' = 2x_{1}x_{2} + x_{1}^{3}$$
$$x_{2}' = -x_{1}^{2} + x_{2}^{5},$$
$$x_{1}' = -x_{1}^{3} + x_{1}^{2}x_{2}$$
$$x_{2}' = -x_{1}^{3} - x_{1}^{2}x_{2},$$

is unstable.

(ii) zero solution for the system

is stable.

Q4. Investigate the stability based on first approximation method of zero solution of the system [7]

$$x_1' = -2x_1 + 5x_2 + 2x_2^3$$

$$x_2' = -4x_1 - 2x_2 + 3x_1^3,$$

we that the grap solution of the

Q5. Using the Krasovskii's method, prove that the zero solution of the system

Max Marks: 40

[4+4]

is asymptotically stable.

Q6. Find all possible limit cycles and discuss its stability behavior for the following system of differential equations [8]

(i)
$$\begin{aligned} x_1' &= -x_2 + x_1(1 - x_1^2 - x_2^2) \\ x_2' &= x_1 + x_2(1 - x_1^2 - x_2^2). \end{aligned}$$

(ii)
$$\begin{aligned} x_1' &= x_2 + x_1 (4 - x_1^2 - x_2^2)^2 \\ x_2' &= -x_1 + x_2 (4 - x_1^2 - x_2^2)^2 \end{aligned}$$

*****END*****