Birla Institute of Technology and Science Pilani
 First Semester 2023-24
 Ordinary Differential Equation (MATH F312) Comprehensive Examination (Close Book)

Time: 100 minutes
Q1. (i) Prove that all the solutions of $\mathbf{x}^{\prime}=A(t) \mathbf{x}$ will be stable iff they are bounded. Here, $A(t)$ is an $n \times n$ continuous matrix on $[0, \infty)$.
(ii) Prove or disprove that the zero solution of

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & e^{2 t} \tag{8}\\
0 & -3
\end{array}\right] \mathbf{x}(t)
$$

is stable on $[0, \infty)$. Use $\left\|\left(x_{1}, x_{2}\right)\right\|=\left|x_{1}\right|+\left|x_{2}\right|$.
Q2. Let $b(t)$ be a continuously differentiable function on $[0, \infty)$. Then prove that all the solutions of $u^{\prime \prime}+(1+b(t)) u=0$, are bounded on $[0, \infty)$ provided $b(t) \rightarrow 0$ as $t \rightarrow \infty$ and $\int_{0}^{\infty}\left|b^{\prime}(s)\right|<\infty$. Furthermore, discuss the boundedness of solutions of

$$
\begin{equation*}
u^{\prime \prime}+\left(1+\frac{1}{(t+1)^{2}}+\frac{1}{(t+1)}\right) u=0 \tag{12}
\end{equation*}
$$

Q3. (i) Let $a(t), b(t)$ be a continuous real valued function on $\left[t_{0}, \infty\right)$ such that $a(t) \leq b(t)$ on $\left[t_{0}, \infty\right)$. Prove that if all the non-trivial solutions of $u^{\prime \prime}+a(t) u=0$, are oscillatory on $\left[t_{0}, \infty\right)$, then all the nontrivial solutions of $v^{\prime \prime}+b(t) v=0$, will be oscillatory on $\left[t_{0}, \infty\right)$.
(ii) Prove or disprove that any nontrivial solution of differential equation $u^{\prime \prime}-\frac{1}{t^{4}} u=0$, vanish more than once in $(1,4)$.

Q4. Prove or disprove that for all the solutions $\mathbf{x}(t)$ of the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
-5 & 4 & 0 \tag{5}\\
0 & 0 & 3 \\
-12 & 8 & -6
\end{array}\right] \mathbf{x},
$$

$\lim _{t \rightarrow \infty}\|\mathbf{x}(t)\|=0$.

Q5. If all the characteristic roots of the characteristic polynomial of the differential equation

$$
y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n} y=0,
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are the real constants, have negative real parts, then prove that for any solution $y(t)$ of above equation, there exist positive numbers α, M such that $|y(t)| \leq M e^{-\alpha t}, t \geq 0$.

Birla Institute of Technology and Science Pilani
 First Semester 2023-24
 Ordinary Differential Equation (MATH F312) Comprehensive Examination (Open Book)
 Date: 07-12-2023

Q1. Using the Gronwall-Reid-Bellman inequality, prove the existence of a unique solution on $J=\left[t_{0}, t_{0}+a\right]$, to the initial value problem

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+B(t), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

where, $A(t), B(t)$ are continuous matrices of order $n \times n$ and $n \times 1$ respectively on J and $\mathbf{x}(\mathrm{t}), \mathbf{x}_{\mathbf{0}}$ are column vectors.

Q2. Compute the Picard's first three iterations for the IVP $u^{\prime}=1+t u, u(0)=2$.
Q3. Using a suitable Liapunov function of the form $a x_{1}^{2}+b x_{2}^{2}$, for appropriate choices of a, b, to prove the following:
(i) zero solution for the system

$$
\begin{gathered}
x_{1}^{\prime}=2 x_{1} x_{2}+x_{1}^{3} \\
x_{2}^{\prime}=-x_{1}^{2}+x_{2}^{5},
\end{gathered}
$$

is unstable.
(ii) zero solution for the system

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}^{3}+x_{1}^{2} x_{2} \\
& x_{2}^{\prime}=-x_{1}^{3}-x_{1}^{2} x_{2},
\end{aligned}
$$

is stable.
Q4. Investigate the stability based on first approximation method of zero solution of the system

$$
\begin{aligned}
& x_{1}^{\prime}=-2 x_{1}+5 x_{2}+2 x_{2}^{3} \\
& x_{2}^{\prime}=-4 x_{1}-2 x_{2}+3 x_{1}^{3},
\end{aligned}
$$

Q5. Using the Krasovskii's method, prove that the zero solution of the system

$$
\begin{gather*}
x_{1}^{\prime}=-3 x_{1}-2 x_{2}-x_{1}^{5} \\
x_{2}^{\prime}=2 x_{1}-3 x_{2}-x_{2}^{5}, \tag{7}
\end{gather*}
$$

is asymptotically stable.
Q6. Find all possible limit cycles and discuss its stability behavior for the following system of differential equations

$$
\begin{gather*}
x_{1}^{\prime}=-x_{2}+x_{1}\left(1-x_{1}^{2}-x_{2}^{2}\right) \\
x_{2}^{\prime}=x_{1}+x_{2}\left(1-x_{1}^{2}-x_{2}^{2}\right) . \tag{i}
\end{gather*}
$$

$$
\begin{gather*}
x_{1}^{\prime}=x_{2}+x_{1}\left(4-x_{1}^{2}-x_{2}^{2}\right)^{2} \\
x_{2}^{\prime}=-x_{1}+x_{2}\left(4-x_{1}^{2}-x_{2}^{2}\right)^{2} . \tag{ii}
\end{gather*}
$$

