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. Using this formula, find 

the smallest root of the equation 00003.6913.472.0 2  xx as accurate as possible. [4] 

2. To find  17  by fixed point method, the following  iteration function is  proposed: 
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 . Find  ,  and  so that the method converge cubically.   [6]                                                                                         

3. Find the upper bound of the error in interpolating the values of  
)2( 2

)( xexf   at x = 

1/3 based on the values at x =  0 and 1.                                                                            [6] 

4. Gauss-Elimination (G-E) with scaled partial pivoting is performed on a 3x3 matrix A. 

After One- Step  of G-E, the  working matrix with scaling factors 7, 4 and 7 respectively, 

pivoting vector P = (2, 1, 3) and multipliers obtained is as:  
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3572.0857.18572.0

7500.0000.15000.0

214.17144.02858.0

          

        Find the second column of 
1A
(inverse of A) using the forward and backward     

        substitutions. Hence, find the value of determinant of A.                               [12] 

5. Using Newton’s method, reduce the nonlinear system: 
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to a system of linear equations in 21, hh  and 3h  to obtain the solution: 

2111 25.0,1.0 hyhx   and 31 0833.0 hz   



 Hence, perform one iteration of Gauss-Seidel method to find the solution of resulting 

system in  
21, hh  and 3h  with initial vector T)1,1,1( so that the iteration scheme converges 

to true solution.                        [12] 

6. Using the definition of divided difference, complete the following divided difference 

table: 
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Hence, using the above table, find 

(a) The values of )1(f  and )1(f  . 

(b) The interpolating polynomial P(x) (in simplified form of degree as high as possible) 

which interpolate f at above points.                                                                          [12] 

7. Derive Newton’s backward interpolating formula to approximate a function using 

Newton’s divided difference formula.                                                                             [8] 

8. Let Ax = b be written as x = B x + c, with some norm of B, 1B , then prove that  x=B x   

+ c has a unique solution R. Further, the sequence generated by x(m+1) = B x(m) + c, m = 

0,1,2,3… , starting with some initial guess x(0), will converge to the exact solution R. [10] 

 

 


