Birla Institute of Technology \& Science, Pilani
Mid Semester Exam (Closed Book) Ist Semester 2022-2023
Course Name : Numerical Analysis (MATH F313) Date: 3rd November 2022
Max. Time: 90 Minutes
Max. Marks: 70

Note: Use four significant digits with rounding wherever not mentioned. Start answering each question on a fresh page.

1. Solutions of $a x^{2}+b x+c=0(a \neq 0)$ are $x=\left(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$. Using this formula, find the smallest root of the equation $0.2 x^{2}-47.913 x+6.0003=0$ as accurate as possible. [4]
2. To find $\sqrt{17}$ by fixed point method, the following iteration function is proposed: $g(x)=\frac{\alpha}{x}+\beta x+\gamma x^{3}$. Find α, β and γ so that the method converge cubically. [6]
3. Find the upper bound of the error in interpolating the values of $f(x)=e^{\left(-2 x^{2}\right)}$ at $x=$ $1 / 3$ based on the values at $x=0$ and 1 .
4. Gauss-Elimination (G-E) with scaled partial pivoting is performed on a 3×3 matrix A. After One- Step of G-E, the working matrix with scaling factors 7,4 and 7 respectively, pivoting vector $\mathrm{P}=(2,1,3)$ and multipliers obtained is as:

$$
\left[\begin{array}{lcc}
0.2858 & -0.7144 & 1.214 \\
0.5000 & 1.000 & -0.7500 \\
-0.8572 & 1.857 & -0.3572
\end{array}\right]
$$

Find the second column of A^{-1} (inverse of A) using the forward and backward substitutions. Hence, find the value of determinant of A.
5. Using Newton's method, reduce the nonlinear system:

$$
\begin{aligned}
& 8 y-\cos ^{2}(z-y)=1 \\
& 10 x+\sin (x+y)=1 \\
& 12 z+\sin z=1
\end{aligned}
$$

to a system of linear equations in h_{1}, h_{2} and h_{3} to obtain the solution: $x_{1}=0.1+h_{1}, \quad y_{1}=0.25+h_{2}$ and $z_{1}=0.0833+h_{3}$

Hence, perform one iteration of Gauss-Seidel method to find the solution of resulting system in h_{1}, h_{2} and h_{3} with initial vector $(1,1,1)^{T}$ so that the iteration scheme converges to true solution.
6. Using the definition of divided difference, complete the following divided difference table:

$x i$	fi	fl,]	fl,,]	f[,,,]	f[,,,,]
-1	2				
		-1			
1				
		1		2	
1	\ldots		$\ldots .$.		4
				
1	\ldots			
		$\ldots .$.			
1	\ldots				

Hence, using the above table, find
(a) The values of $f^{\prime \prime}(1)$ and $f^{\prime \prime \prime}(1)$.
(b) The interpolating polynomial $\boldsymbol{P}(\boldsymbol{x})$ (in simplified form of degree as high as possible) which interpolate f at above points.
7. Derive Newton's backward interpolating formula to approximate a function using Newton's divided difference formula.
8. Let $\mathrm{A} \boldsymbol{x}=b$ be written as $\boldsymbol{x}=B \boldsymbol{x}+c$, with some norm of $B,\|B\|<1$, then prove that $\boldsymbol{x}=B \boldsymbol{x}$ $+c$ has a unique solution \boldsymbol{R}. Further, the sequence generated by $\boldsymbol{x}^{(m+1)}=B \boldsymbol{x}^{(m)}+c, m=$ $0,1,2,3 \ldots$, starting with some initial guess $\boldsymbol{x}^{(\boldsymbol{\theta})}$, will converge to the exact solution \boldsymbol{R}. [10]

