Birla Institute of Technology \& Science, Pilani
Mid Semester Exam (Closed Book) I It Semester 2023-2024
Course Name : Numerical Analysis (MATH F313) Date:
Max. Time: 90 Minutes
Max. Marks: 70

Note: Use four significant digits with rounding wherever not mentioned. Start answering each question on a fresh page.
\qquad

1. Find the value of the polynomial

$$
\begin{equation*}
P(x)=5.9999 x^{2}+3.0004 x^{4}-2 x^{3}-6.9999 x+11.00008 \quad \text { at } x=3.1402, \text { using the } \tag{6}
\end{equation*}
$$ process which involves lesser number of operations (justify your process).

2. Using the method of quadratic convergence, find the point of intersection of $y=3 x$ and $y=\cos x+1$ correct up to four digits after decimal in normalize form. Take the initial approximation as $x_{0}=0.5$.(use five significant digits with rounding).
3. To Solve the non-linear equation $f(x)=0$, following iteration is used.

$$
x_{0}=5, \quad x_{n+1}=\frac{1}{16}\left(x_{n}^{4}-8 x_{n}^{3}+128 x_{n}-192\right) \quad n=0,1,2,3, \ldots \ldots .
$$

Find the order of convergence of the above iteration at $r=4$, where $f(r)=0$. Justify your answer.
4. Find the upper bound of the error in interpolating the values of $f(x)=2 e^{(3(x-1) / 4)}$ at x $=2$ based on the values at $x=0,1,3,4,6$.
5. Perform Gauss-Elimination (G-E) with scaled partial pivoting, storing multipliers and pivoting vector on the following 3×3 matrix.

$$
\mathrm{A}=\left[\begin{array}{lll}
3 & 2 & 100 \\
-1 & 3 & 100 \\
1 & 2 & -1
\end{array}\right]
$$

Then, solve $A X=b$ where $b=(105,102,2)^{T}$ using forward and backward substitution. Hence, find the value of determinant of A.
6. Using Newton's method, reduce the nonlinear system:

$$
\begin{aligned}
& 2 x^{3}-4 y^{2}+z^{2}+3 y=1 \\
& 5 x^{2}+2 y^{3}-2 z^{2}-2 x=5 \\
& 2 x^{2} y z=3
\end{aligned}
$$

to a system of linear equations in h_{1}, h_{2} and h_{3} to obtain the solution: $x=1+h_{1}, \quad y=-1+h_{2}$ and $z=-1+h_{3}$

Hence, perform one iteration of Gauss-Seidel method to find the solution of resulting system in h_{1}, h_{2} and h_{3} with initial vector $(0,1,1)^{T}$ so that the iteration scheme converges to true solution.
7. Derive Newton's divided difference interpolating formula to approximate a function using $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots \ldots . \mathrm{x}_{\mathrm{n}}$, distinct $(\mathrm{n}+1)$ point.
8. State and prove Fixed point theorem.

