BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Second Semester 2022 – 23 MATH F341: Introduction to Functional Analysis Mid Semester Examination Duration: 90 mins Date: 17/03/2023 MM : 70

- Q1. Let X be a non-zero normed linear space. Then show that X is a Banach space if and only if the set $S = \{x \in X : ||x|| = 1\}$ is complete. [15]
- Q2. Let *T* be a linear transformation from a Banach space *X* into a Banach space *Y* such that graph of *T* is closed. Then show that *T* is continuous. [15]
- Q3. Prove that for every x in a normed linear space X, |f(x)|

$$||x|| = \sup_{0 \neq f \in X^*} \frac{|f(x)|}{||f||}$$

If $x_0 \in X$ be such that $|f(x_0)| \le c$ for all $f \in X^*$ with ||f|| = 1, then using the above result show that $||x_0|| \le c$. [10+5=15]

[5x4=20]

- Q4. Let (x_n) be any sequence in an inner product space X such that $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$, $x \in X$. Then prove that $x_n \to x$. [5]
- Q5. Let *S* be any subset of a Hilbert space *H*. Then prove the following:
 - (i) $S^{\perp} = S^{\perp \perp \perp}$.
 - (ii) $S \cap S^{\perp} = \{0\}$, if *S* is a subspace of *H*.
 - (iii) $H^{\perp} = \{0\}$ and $H = \{0\}^{\perp}$.

END