Birla Institute of Technology and Science, Pilani

Second Semester 2022-23, Comprehensive Examination (Closed Book)
 MATH F 341: Introduction to Functional Analysis

Max. Marks: 45
Date: 17.05.2023
Time: 60 mins
Name:
ID. No.

Write the correct choice ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D) in the following table. Each correct answer carries 3 marks and incorrect answer -1 mark.

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ANS															

1. Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal set in a Hilbert space H. Then which of the following is true?
(A) $\left\|e_{1}-e_{2}-e_{3}\right\|=0$.
(B) $\quad\left\|e_{1}-e_{2}-e_{3}\right\|=3$
(C) $\left\|e_{1}-e_{2}-e_{3}\right\|=\sqrt{3}$.
(D) None of the above
2. Let M be a closed subspace of a normed linear space X, and $T: X \rightarrow \frac{X}{M}$ be the natural mapping. Then which of the following is true?
(A) $\|T\| \leq 1$
(B) T is discontinuous at zero
(C) T is continuous but not linear
(D) None of the above
3. Which of the following is a true statement?
(A) l^{1} and l^{∞} both are separable
(B) l^{1} is separable but l^{∞} is not separable
(C) l^{1} is not separable but l^{∞} is separable
(D) None of the above
4. Let T be a bounded linear transformation from a normed linear space X onto a normed linear space Y. If there is a positive real number b such that $\|T x\| \geq b\|x\|$ for all $x \in X$. Then which of the following is true?
(A) T^{-1} exists but T^{-1} is not bounded
(B) T^{-1} does not exists
(C) T^{-1} exists and T^{-1} is bounded
(D) None of the above
5. X be an infinite dimensional normed linear space, $E=\{x \in X:\|x\| \leq 1\}$ and $F=\{x \in X:\|x\|=1\}$. Then which of the following is true?
(A) E and F both are not compact.
(B) E and F both are compact.
(C) E is compact but F is not compact
(D) F is compact but E is not compact
6. Let T be a continuous linear functional defined on a normed linear space X, and $N(T)$ denotes the null space of T. Then which of the following is true?
(A) $N(T)$ is open
(B) $N(T)$ is closed
(C) $N(T)$ is neither open nor closed
(D) None of the above
7. Consider the following two statements:

S1: Every linear operator on a finite-dimensional normed linear space is continuous.
S2: Any two norms on a finite-dimensional normed linear space are equivalent.
Then which of the following is true?
(A) S1 is true and S2 is false
(B) S 1 is false and S 2 is true
(C) S1 and S2 both are false
(D) S1 and S2 both are true
8. Let $T \in B(H)$ be self adjoint. Then which of the following is true?
(A) $\langle T x, x\rangle$ is real for all $x \in H$
(B) $\langle T x, x\rangle$ is purely imaginary for all $x \in H$
(C) T is not normal
(D) None of the above
9. Let $T \in B(H)$ and K be an eigenvalue of T. Then which of the following is true?
(A) $|K|>\|T\|$
(B) $|K|=1$
(C) $|K| \leq\|T\|$
(D) None of the above
10. Let Y be a subspace of an inner product space X. Let $x \in X$ satisfies $\|x-y\| \geq\|x\|$ for all $y \in Y$. Then which of the following is true?
(A) $\langle x, y\rangle>1$ for all $y \in Y$
(B) $0<\langle x, y\rangle<1$ for all $y \in Y$
(C) $\langle x, y\rangle=1$ for all $y \in Y$
(D) None of the above
11. Let $T \in B(H)$. Then which of the following is true?
(A) $T^{*} T$ is self adjoint and $T T^{*}$ is normal
(B) $T^{*} T$ is not self adjoint and $T T^{*}$ is normal
(C) $T^{*} T$ is self adjoint and $T T^{*}$ is not normal
(D) None of these
12. Let H be a complex Hilbert space and $A \in B(H)$ be a normal operator. Let $r_{A}=$ spectral radius of $A, \quad R_{A}=$ numerical radius of A. Then which of the following is true?
(A) $\quad r_{A}<R_{A} \leq\|A\|$
(B) $r_{A}=R_{A}<\|A\|$
(C) $\quad r_{A}=R_{A}=\|A\|$
(D) None of the above
13. Let $T \in B\left(l^{2}\right)$ be defined by $T\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, x_{4}, \ldots \ldots\right)$, and $e(T)=$ set of all eigenvalues of A. Then which of the following is true?
(A) $e(T)=\{1\}$
(B) $e(T)=\{-1\}$
(C) $e(T)=\{1,-1\}$
(D) None of the above
14. Let S be a subset of a Hilbert space H. Which of the following statements is FALSE?
(A) $S^{\perp}=(\bar{S})^{\perp}$
(B) S^{\perp} is a closed subspace of H
(C) $S^{\perp \perp}$ is the smallest subspace of H containing S
(D) None of these
15. Consider the following statements:

S1: Let T be linear transformation from a normed linear space X to a normed linear space Y, and T be continuous at $x=0$. Then T need not be continuous at every point of X.
S2: Let Y be subspace of a normed linear space X, and $\operatorname{dim} Y<\infty$. Then Y must be closed in X. Then which of the following is true?
(A) S1 is true and S2 is false
(B) S 1 is false and S 2 is true
(C) S1 and S2 both are false
(D) S1 and S2 both are true

Birla Institute of Technology and Science, Pilani
Second Semester 2022-23, Comprehensive Examination (Closed Book)
MATH F 341: Introduction to Functional Analysis
Max. Marks: 45
Date: 17.05.2023
Time: 60 mins
Name:
ID. No.

Write the correct choice (A, B, C or D) in the following table. Each correct answer carries 3 marks and incorrect answer -1 mark.

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ANS															

1. Let $T \in B\left(l^{2}\right)$ be defined by $T\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, x_{4}, \ldots \ldots\right)$, and $e(T)=$ set of all eigenvalues of A . Then which of the following is true?
(A) $e(T)=\{1\}$
(B) $e(T)=\{-1\}$
(C) $e(T)=\{1,-1\}$
(D) None of the above
2. Let S be a subset of a Hilbert space H. Which of the following statements is FALSE?
(A) $S^{\perp}=(\bar{S})^{\perp}$
(B) S^{\perp} is a closed subspace of H
(C) $S^{\perp \perp}$ is the smallest subspace of H containing S
(D) None of these
3. Consider the following statements:

S1: Let T be linear transformation from a normed linear space X to a normed linear space Y, and T be
continuous at $x=0$. Then T need not be continuous at every point of X.
S2: Let Y be subspace of a normed linear space X, and $\operatorname{dim} Y<\infty$. Then Y must be closed in X. Then which of the following is true?
(A) S1 is true and S2 is false
(B) S1 is false and S2 is true
(C) S 1 and S 2 both are false
(D) S 1 and S 2 both are true
4. Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal set in a Hilbert space H. Then which of the following is true?
(A) $\left\|e_{1}-e_{2}-e_{3}\right\|=0$.
(B) $\left\|e_{1}-e_{2}-e_{3}\right\|=3$
(C) $\left\|e_{1}-e_{2}-e_{3}\right\|=\sqrt{3}$.
(D) None of the above
5. Let M be a closed subspace of a normed linear space X, and $T: X \rightarrow \frac{X}{M}$ be the natural mapping. Then which of the following is true?
(A) $\|T\| \leq 1$
(B) T is discontinuous at zero
(C) T is continuous but not linear
(D) None of the above
6. Which of the following is a true statement?
(A) l^{1} and l^{∞} both are separable
(B) l^{1} is separable but l^{∞} is not separable
(C) l^{1} is not separable but l^{∞} is separable
(D) None of the above
7. Let T be a bounded linear transformation from a normed linear space X onto a normed linear space Y. If there is a positive real number b such that $\|T x\| \geq b\|x\|$ for all $x \in X$. Then which of the following is true?
(A) T^{-1} exists but T^{-1} is not bounded
(B) T^{-1} does not exists
(C) T^{-1} exists and T^{-1} is bounded
(D) None of the above
8. $\quad X$ be an infinite dimensional normed linear space, $E=\{x \in X:\|x\| \leq 1\}$ and $F=\{x \in X:\|x\|=1\}$. Then which of the following is true?
(A) E and F both are not compact.
(B) E and F both are compact.
(C) E is compact but F is not compact
(D) F is compact but E is not compact
9. Let T be a continuous linear functional defined on a normed linear space X, and $N(T)$ denotes the null space of T. Then which of the following is true?
(A) $N(T)$ is open
(B) $N(T)$ is closed
(C) $N(T)$ is neither open nor closed
(D) None of the above
10. Consider the following two statements:

S1: Every linear operator on a finite-dimensional normed linear space is continuous.
S2: Any two norms on a finite-dimensional normed linear space are equivalent.
Then which of the following is true?
(A) S 1 is true and S 2 is false
(B) S1 is false and $S 2$ is true
(C) S 1 and S 2 both are false
(D) S 1 and S 2 both are true
11. Let $T \in B(H)$ be self adjoint. Then which of the following is true?
(A) $\langle T x, x\rangle$ is real for all $x \in H$
(B) $\langle T x, x\rangle$ is purely imaginary for all $x \in H$
(C) T is not normal
(D) None of the above
12. Let $T \in B(H)$ and K be an eigenvalue of T. Then which of the following is true?
(A) $|K|>\|T\|$
(B) $|K|=1$
(C) $|K| \leq\|T\|$
(D) None of the above
13. Let Y be a subspace of an inner product space X. Let $x \in X$ satisfies $\|x-y\| \geq\|x\|$ for all $y \epsilon Y$. Then which of the following is true?
(A) $\langle x, y\rangle>1$ for all $y \epsilon Y$
(B) $0<\langle x, y\rangle<1$ for all $y \epsilon Y$
(C) $\langle x, y\rangle=1$ for all $y \epsilon Y$
(D) None of the above
14. Let $T \in B(H)$. Then which of the following is true?
(A) $T^{*} T$ is self adjoint and $T T^{*}$ is normal
(B) $T^{*} T$ is not self adjoint and $T T^{*}$ is normal
(C) $T^{*} T$ is self adjoint and $T T^{*}$ is not normal
(D) None of these
15. Let H be complex Hilbert space and $A \in B(H)$ be a normal operator. Let $r_{A}=$ spectral radius of $A, R_{A}=$ numerical radius of A. Then which of the following is true?
(A) $r_{A}<R_{A} \leq\|A\|$
(B) $r_{A}=R_{A}<\|A\|$
(C) $r_{A}=R_{A}=\|A\|$
(D) None of the above

PART B

Birla Institute of Technology and Science, Pilani
 Second Semester 2022-23, Comprehensive Examination (Open Book)
 MATH F 341: Introduction to Functional Analysis

Max. Marks: 45
Date: 17.05.2023
Time: 120 mins

Q1. Let $T \in B(H)$ be self adjoint operator and $T \geq 0$. Then show that range space of $I+T$ is closed. [5]

Q2. Let $T \in B(H)$ be a normal operator and $\operatorname{Ker}(T)=\{0\}$. Then answer the following question?
(i) Is T^{*} one-one? Justify your answer.
(ii) Prove that range space of T is dense in H.

Q3. Let H be complex Hilbert space and $U \in B(H)$ be unitary. Let $f: B(H) \rightarrow B(H)$ be a linear operator defined by $f(T)=U^{*} T U$. Then show that f is an isometry. [$S \in B(H)$ is said to be an isometry if $\|S x\|=\|x\|$ for all $x \in H]$.

Q4. Let $H=l^{2}$ be a Hilbert space and $T, T^{*} \in B(H)$ be defined by

$$
\begin{aligned}
& T\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots \ldots\right) \\
& T^{*}\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots \ldots\right)
\end{aligned}
$$

Then answer the following questions:
(i) Find $e(T)$, the set of all eigenvalues of T.
(ii) Show that $\langle T x, T y\rangle=\langle x, y\rangle$ for all $x, y \in H$.
(iii) Show that 0 is an eigenvalue of $T T^{*}$ and find an eigenvector of $T T^{*}$ corresponding to the eigenvalue 0 .

Q5. Let $H=\mathbb{R}^{2}$ be a real Hilbert Space and $A \in B(H)$. For $x=\left(x_{1}, x_{2}\right)$, define $A x=\left(x_{2},-x_{1}\right)$. Then answer the following questions:
(i) Is A unitary? Is A normal? Justify your answer in each case.
(ii) Compute $R_{A^{*}}$ and $R_{\left(A^{*}\right)^{2}}$, where $R_{A^{*}}=$ numerical radius of A^{*}.

Q6. Let H be a real Hilbert Space and $y, z \in H$. Let T be a bounded linear operator defined by

$$
T(x)=\langle x, y\rangle_{z}, \quad x \in H
$$

Then show that (i) T is compact, and (ii) $T^{*}(w)=\langle w, z\rangle y$.
Q7. Let $E=\left\{e_{1}, e_{2}, \ldots \ldots, e_{n}\right\}$ be an orthonormal set in a Hilbert space H.
Then prove or disprove: E is linearly independent.

