Birla Institute of Technology and Science, Pilani 2nd Semester 2016-17 Differential Geometry (MATH F342) Comprehensive Examination Part I (Closed Book)

Max. Time :100 mins

Max. Marks: 50

[6]

Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

- 1. By applying isoperimetric inequality to a suitable ellipse, show that $\int_{0}^{\infty} \sqrt{\cos^2 t + 4\sin^2 t} dt > (2\sqrt{2})\pi.$
- 2. Let $U_1 = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 < 1\}, U_2 = \{(\theta, \varphi) \in \mathbb{R}^2 : \theta \in (0, 2\pi), \varphi \in (0, \pi)\}$ and let $\vec{\sigma}_1 : U_1 \to \mathbb{R}^3$ and $\vec{\sigma}_2 : U_2 \to \mathbb{R}^3$ be the surface patches of the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ defined by $\vec{\sigma}_1(u, v) = (u, v, \sqrt{1 - u^2 - v^2})$ and $\vec{\sigma}_2(\theta, \varphi) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$. Find the transition map from $\vec{\sigma}_1$ to $\vec{\sigma}_2$. Justify your answer. [8]
- 3. Let $\vec{\sigma}(u,v) = \left(\frac{u}{\sqrt{u^2 + v^2 + 4}}, \frac{v}{\sqrt{u^2 + v^2 + 4}}, \frac{2}{\sqrt{u^2 + v^2 + 4}}\right); (u,v) \in \mathbb{R}^2$ be a regular surface patch of a smooth surface S (A) Find a level surface f(x, y, z) = 0 containing $\text{Im}(\vec{\sigma})$. (B) Find $(u_0, v_0) \in \mathbb{R}^2$ such that $\vec{\sigma}(u_0, v_0) = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ (C) Find a basis for the tangent space to S at $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. (D) Find the standard surface normal to $\vec{\sigma}$ at $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. [2+3+4+2]4. Let $\vec{\sigma}: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times (0, \pi) \to \mathbb{R}^3$ be a regular surface patch given by $\vec{\sigma}(\theta, \varphi) =$ $(\cos \varphi, \sin \varphi, \sin \theta)$. Let $f : Im(\vec{\sigma}) \to \mathbb{R}^3$ be defined by $f(x, y, z) = (x\sqrt{1-z^2}, y)$ $y\sqrt{1-z^2}$, z). Answer with justification the following : (A) Find the 1st Fundamental forms of $\vec{\sigma}$ and $f \circ \vec{\sigma}$ (B) Decide if f is an isometry of $\text{Im}(\vec{\sigma})$ with $\text{Im}(f \circ \vec{\sigma})$. (C) Is f conformal? (D) Is f equiareal? [5+2+2+2]5. Find the principal curvatures at an arbitrary point of the surface patch whose 1st

Fundamental form is $(1 + v^2)du^2 (\frac{1}{2}dv)^2$ and 2^{nd} Fundamental Form is $\frac{2dudv}{\sqrt{1+v^2}}$, $(u, v) \in (0,1) \times (0,2\pi)$. Hence decide if $\vec{\sigma}(\frac{1}{2},\pi)$ is elliptic or hyperbolic or parabolic or planar.

6. Let $\vec{\sigma}(u,v) = ((2 + \cos v) \cos u, (2 + \cos v, v) \sin u, \sin v), 0 < u < 2\pi, 0 < v < 2\pi$ be a regular surface patch. Find the 1st Fundamental Form of $\vec{\sigma}$ and hence the surface area of Im($\vec{\sigma}$). [8]

Birla Institute of Technology and Science, Pilani 2nd Semester 2016-17 Differential Geometry (MATH F342) Comprehensive Examination Part II (Open book)

Max. Time: 80 mins

Max. marks : 40

Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

- 1. Let $\vec{\gamma}(t) = (a \sin \omega t, b \sin t); t \in \mathbb{R}$ be a parametrized curve where a, b, ω are real constants with $ab\omega \neq 0$. Show that $\vec{\gamma}$ is regular if and only if ω is not a ratio of odd integers. [8]
- 2. Let $\vec{\gamma}^{(s)}$ be a generalized helix with arc length parameter s and let $\vec{\gamma}^{*}(s) = \vec{\gamma}'(s)$. Show that $\vec{\gamma}^{*}(s)$ is a circle. [8]
- 3. Let $\vec{\gamma}(t) = (x(t), y(t), z(t)); t \in (\alpha, \beta)$ be a smooth unit speed curve such that $\|\vec{\gamma}(t)\| = 1$ for all $t \in (\alpha, \beta)$. Show that $\vec{\gamma}''(t)$ lies in the plane spanned by $\vec{\gamma}(t)$ and $\vec{\gamma}(t) \times \vec{\gamma}'(t)$. Hence show that curvature of $\vec{\gamma}(t) = \frac{x(t)}{y'(t)} = \frac{y(t)}{y'(t)} = \frac{y(t)$
- 4. Find a smooth function f(x) for $0 < x < \pi/2$ such that $f''(x) > 0 \forall x \in (0, \pi/2)$ and for any $0 < x < \pi/2$, the curvature of the curve y = f(x) at (x, f(x)) is $\sqrt{1 + f'(x)^2}$. [8]
- 5. Let $\vec{\gamma}(t) = (\cos t + 2\sin t, \cos t 2\sin t), t \in \mathbb{R}$. Find the maximum value of the curvature $\kappa(t)$ of $\vec{\gamma}(t)$. Hence show that the curve $\vec{\gamma} \cdot \vec{\lambda}(t) = \vec{\gamma}(t) + \lambda \vec{n_s}(t)$ is regular if $|\lambda| < \frac{1}{\sqrt{2}}$, where $\vec{n_s}(t)$ is the signed unit normal of $\vec{\gamma}(t)$ and λ is constant. [8]