Birla Institute of Technology and Science, Pilani
 2nd Semester 2016-17
 Differential Geometry (MATH F342)
 Comprehensive Examination
 Part I (Closed Book)

Max. Time :100 mins
Max. Marks: 50
Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. By applying isoperimetric inequality to a suitable ellipse, show that $\int_{0} \sqrt{\cos ^{2} t+4 \sin ^{2} t d t>(2 \sqrt{2}) \pi \text {. } ~}$
2. Let $U_{1}=\left\{(u, v) \in \mathbb{R}^{2}: u^{2}+v^{2}<1\right\}, U_{2}=\left\{(\theta, \varphi) \in \mathbb{R}^{2}: \theta \in(0,2 \pi), \varphi \in(0, \pi)\right\}$ and let $\vec{\sigma}_{1}: U_{1} \rightarrow_{\mathbb{R}^{3}}$ and $\dot{\vec{\sigma}}_{2}: U_{2} \rightarrow_{\mathbb{R}^{3}}$ be the surface patches of the unit sphere $S=$ $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ defined by $\vec{\sigma}_{1}(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$ and $\vec{\sigma}_{2}(\theta, \varphi)=(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$. Find the transition map from $\vec{\sigma}_{1}$ to $\vec{\sigma}_{2}$. Justify your answer.
3. Let $\vec{\sigma}(u, v)=\left(\frac{u}{\sqrt{u^{2}+v^{2}+4}}, \frac{v}{\sqrt{u^{2}+v^{2}+4}}, \frac{2}{\sqrt{u^{2}+v^{2}+4}}\right) ;(u, v) \in \mathbb{R}^{2}$ be a regular surface patch of a smooth surface S.
(A) Find a level surface $f(x, y, z)=0$ containing $\operatorname{Im}(\vec{\sigma})$.
(B) Find $\left(u_{0}, v_{0}\right) \in \mathbb{R}^{2}$ such that $\vec{\sigma}\left(u_{0}, v_{0}\right)=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
(C) Find a basis for the tangent space to S at $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
(D) Find the standard surface normal to $\vec{\sigma}$ at $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
4. Let $\vec{\sigma}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(0, \pi) \rightarrow \mathbb{R}^{3}$ be a regular surface patch given by $\vec{\sigma}(\theta, \varphi)=$ $(\cos \varphi, \sin \varphi, \sin \theta)$. Let $f: \operatorname{Im}(\vec{\sigma}) \rightarrow \mathbb{R}^{3}$ be defined by $f(x, y, z)=\left(x \sqrt{1-z^{2}}\right.$, $y \sqrt{1-z^{2}}, z$). Answer with justification the following :
(A) Find the $1^{\text {st }}$ Fundamental forms of $\vec{\sigma}$ and $f \circ \vec{\sigma}$
(B) Decide if f is an isometry of $\operatorname{Im}(\vec{\sigma})$ with $\operatorname{Im}(f \circ \vec{\sigma})$.
(C) Is f conformal?
(D) Is f equiareal?
5. Find the principal curvatures at an arbitrary point of the surface patch whose $1^{\text {st }}$ Fundamental form is $\left(1+v^{2}\right) d u^{2}\left(\dagger_{1} d v^{2}\right.$ and $2^{\text {nd }}$ Fundamental Form is $\frac{2 d u d v}{\sqrt{1+v^{2}}},(u, v) \in$
$(0,1) \times(0,2 \pi)$. Hence decide if $\left(\frac{1}{2}\right)$ is elliptic or hyperbolic or parabolic or planar.
6. Let $\vec{\sigma}(u, v)=((2+\cos v) \cos u,(2+\cos v, v) \sin u, \sin v), 0<u<2 \pi, 0<v<2 \pi$ be a regular surface patch. Find the $1^{\text {st }}$ Fundamental Form of $\vec{\sigma}$ and hence the surface area of $\operatorname{Im}(\vec{\sigma})$.

Birla Institute of Technology and Science, Pilani
 2nd Semester 2016-17
 Differential Geometry (MATH F342)
 Comprehensive Examination
 Part II (Open book)

Max. Time: 80 mins

Max. marks : 40
Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. Let $\vec{\gamma}(t)=(a \sin \varpi t, b \sin t) ; t \in \mathbb{R}$ be a parametrized curve where a, b, ϖ are real constants with $a b \varpi \neq 0$. Show that $\vec{\gamma}$ is regular if and only if $\varpi_{\text {is not a ratio of odd integers. }}$
2. Let $\vec{\gamma}(s)$ be a generalized helix with arc length parameter s and let $\vec{\gamma}^{*}(s)=\vec{\gamma}^{\prime}(s)$. Show that $\vec{\gamma}^{*}(s)$ is a circle.
3. Let $\vec{\gamma}(t)=(x(t), y(t), z(t)) ; t \in(\alpha, \beta)$ be a smooth unit speed curve such that $\|\vec{\gamma}(t)\|=1$ for all $t \in(\alpha, \beta)$. Show that $\vec{\gamma}^{\prime \prime}(t)$ lies in the plane spanned by $\vec{\gamma}(t)$ and $\vec{\gamma}(t) \times \vec{\gamma}^{\prime}(t)$. Hence show that curvature of ${ }^{\prime}\left(\right.$ (h) (t) is $(t) \mid$ given by $\kappa(t)=\sqrt{1+J(t)^{2}}$ where $J(t)=x^{\prime}(t) \quad y^{\prime}(t) \quad z^{\prime}(t)$.
$x^{\prime \prime}(t) \quad y^{\prime \prime}(t) \quad z^{\prime \prime}(t) \mid$
4. Find a smooth function $f(x)$ for $0<x<\pi / 2$ such that $f^{\prime \prime}(x)>0 \forall x \in(0, \tau / 2)$ and for any $0<x<\pi / 2$, the curvature of the curve ${ }^{y=f(x)}$ at $(x, f(x))$ is $\overline{\sqrt{1+f^{\prime}(x)^{2}}}$.
5. Let $\vec{\gamma}(t)=(\cos t+2 \sin t, \cos t-2 \sin t), t \in \mathbb{R}$. Find the maximum value of the curvature $\kappa(t)$ of $\vec{\gamma}(t)$. Hence show that the curve $\overrightarrow{\gamma^{\lambda}}(t)=\vec{\gamma}(t)+\lambda \overrightarrow{n_{s}}(t)$ is regular if $\lambda<\frac{\sqrt{2}}{\sqrt{2}}$, where $\overrightarrow{n_{s}}(t)$ is the signed unit normal of $\vec{\gamma}(t)$ and λ is constant.
