Birla Institute of Technology and Science, Pilani
 2nd Semester 2016-17
 Differential Geometry (MATH F342)
 Mid-semester Test (Closed book)

Max. Time: 90 mins

Max. marks : 70

Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. A disk of radius 1 , initially having center at $(2,0)$, rolls in anticlockwise direction over a disk of radius 1 having center $(0,0)$. Find the parametric equation of the curve traced by point P of the rolling disk, initially having coordinates $\left(\frac{3}{2}, 0\right)$. Also, find all the points where this parametrized curve is not regular.
2. Obtain a unit speed reparameterization of the curve
$\vec{r}(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right), \quad 0<t<1$.
3. Define the torsion of a smooth unit speed curve. Prove that the torsion of a unit speed curve $\vec{\gamma}(s)$ is given by $\tau(s)=\frac{\left(\vec{\gamma}^{\prime} \times \vec{\gamma}^{\prime \prime}\right) \cdot \vec{\gamma}^{\prime \prime \prime}}{\left\|\left(\vec{\gamma}^{\prime} \times \vec{\gamma}^{\prime \prime}\right)\right\|^{2}}$.
4. For a smooth unit speed curve $\vec{\gamma}(s)$ whose curvature $\kappa=\kappa(s)$ and torsion $\tau=\tau(s)$ are both non-vanishing, show that $\left(\frac{d \vec{b}}{d s} \times \frac{d^{2} \vec{b}}{d s^{2}}\right) \cdot \frac{d^{3} \vec{b}}{d s^{3}}=\tau^{5} \frac{d(\kappa / \tau)}{d s}$, where the vector $\vec{b}(s)$ is a unit binormal vector to $\vec{\gamma}(s)$.
5. Define involute of a smooth plane unit speed curve. Find the involute $\vec{i}(t)$ of $\vec{\gamma}(t)=(t-\sin t, 1-\cos t), 0<t<\pi$.
6. Let $\vec{\gamma}(t)=(t, \sin t), t \in\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ and let for a real number λ,
$\vec{\gamma}^{\lambda}(t)=\vec{\gamma}(t)+\lambda \vec{n}_{s}(t), t \in\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ be the curve parallel to $\vec{\gamma}(t)$. Find all the positive values of λ such that $\vec{\gamma}^{\lambda}(t)$ is regular.
7. Define a general helix. Let $\vec{\gamma}(s)$ be a smooth unit speed curve with positive curvature $\kappa(s)$ and positive torsion $\tau(s)$ and $\vec{\gamma}^{*}(s)=\vec{b}(s)$, the unit binormal of $\vec{\gamma}(s)$. Find $\frac{d \kappa^{*}}{d s}$ for the curvature $\kappa^{*}(s)$ of $\vec{\gamma}^{*}(s)$.
