Birla Institute of Technology and Science, Pilani 2nd Semester 2016-17 **Differential Geometry (MATH F342)** Mid-semester Test (Closed book)

Max. Time: 90 mins

Max. marks: 70

[10]

Instructions: 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

- 1. A disk of radius 1, initially having center at (2, 0), rolls in anticlockwise direction over a disk of radius 1 having center (0, 0). Find the parametric equation of the curve traced by point P of the rolling disk, initially having coordinates $\left(\frac{3}{2}, 0\right)$. Also, find all the points
 - where this parametrized curve is not regular.
- 2. Obtain a unit speed reparameterization of the curve $\vec{r}(t) = (e^t \cos t, e^t \sin t, e^t), \quad 0 < t < 1.$ [10]
- 3. Define the torsion of a smooth unit speed curve. Prove that the torsion of a unit speed curve $\vec{\gamma}(s)$ is given by $\tau(s) = \frac{(\vec{\gamma}' \times \vec{\gamma}'') \cdot \vec{\gamma}'''}{\|(\vec{\gamma}' \times \vec{\gamma}'')\|^2}$. [10]
- 4. For a smooth unit speed curve $\vec{\gamma}(s)$ whose curvature $\kappa = \kappa(s)$ and torsion

$$\tau = \tau(s)$$
 are both non-vanishing, show that $\left(\frac{d\vec{b}}{ds} \times \frac{d^2\vec{b}}{ds^2}\right) \cdot \frac{d^3\vec{b}}{ds^3} = \tau^5 \frac{d(\kappa/\tau)}{ds}$, where the vector $\vec{b}(s)$ is a unit binormal vector to $\vec{\gamma}(s)$. [10]

the vector b(s) is a unit binormal vector to $\vec{\gamma}(s)$.

- 5. Define involute of a smooth plane unit speed curve. Find the involute $\vec{i}(t)$ of $\vec{\gamma}(t) = (t - \sin t, 1 - \cos t), \ 0 < t < \pi$. [10]
- 6. Let $\vec{\gamma}(t) = (t, \sin t), t \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ and let for a real number λ , $\vec{\gamma}^{\lambda}(t) = \vec{\gamma}(t) + \lambda \vec{n}_s(t), t \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ be the curve parallel to $\vec{\gamma}(t)$. Find all the positive values of λ such that $\vec{\gamma}^{\lambda}(t)$ is regular. [10]
- 7. Define a general helix. Let $\vec{\gamma}(s)$ be a smooth unit speed curve with positive curvature $\kappa(s)$ and positive torsion $\tau(s)$ and $\vec{\gamma}^*(s) = \vec{b}(s)$, the unit binormal of $\vec{\gamma}(s)$. Find $\frac{d\kappa^*}{ds}$ for the curvature $\kappa^*(s)$ of $\vec{\gamma}^*(s)$. [10]

-----All the Best-----