Birla Institute of Technology and Science, Pilani
 2nd Semester 2017-18
 Differential Geometry (MATH F342)
 Comprehensive Exam
 Part A (Closed book)

Max. Time: 100 mins
Max. marks : 50
Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. Let $\overrightarrow{\boldsymbol{\gamma}}(\boldsymbol{t})$ be a simple closed smooth unit speed plane curve with period \boldsymbol{l} and $\boldsymbol{\kappa}_{\boldsymbol{s}}(\boldsymbol{t})$ denote its signed curvature. Show that $\int_{\mathbf{0}}^{l} \frac{d \kappa_{s}}{d t} \vec{\gamma}(\boldsymbol{t}) d \boldsymbol{t}=\overrightarrow{\mathbf{0}}$.
2. Let $\boldsymbol{S}=\left\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{R}^{\mathbf{3}} \boldsymbol{x}^{2}+\boldsymbol{y}^{2}+(\mathbf{z}-\mathbf{1})^{2}=\mathbf{1}\right\}$ and $\boldsymbol{N}=(\mathbf{0}, \mathbf{0}, \mathbf{2}) \in \boldsymbol{S}$. Find a surface patch $\overrightarrow{\boldsymbol{\sigma}}: \mathbb{R}^{2} \rightarrow \boldsymbol{S}$ such that $\overrightarrow{\boldsymbol{\sigma}}(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{S} \cap \boldsymbol{L})-\{\boldsymbol{N}\}$ where \boldsymbol{L} is the line segment joining $(\boldsymbol{u}, \boldsymbol{v}, \mathbf{0})$ to \boldsymbol{N}. Also find an open set \boldsymbol{W} of \mathbb{R}^{3} such that $\overrightarrow{\boldsymbol{\sigma}}\left(\mathbb{R}^{2}\right)=$ $\boldsymbol{S} \cap \boldsymbol{W}$.
3. Let $\boldsymbol{S}=\left\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{R}^{\mathbf{3}}: \boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}+\mathbf{z}^{2}=\mathbf{1}\right\}$. Let $\overrightarrow{\boldsymbol{\sigma}_{\boldsymbol{i}}}: \boldsymbol{U}_{\boldsymbol{i}} \rightarrow \boldsymbol{S}, \boldsymbol{i}=\mathbf{1}, \mathbf{2}$ be surface patches of S defined by

$$
\begin{align*}
& \overrightarrow{\sigma_{1}}\left(u_{1}, v_{1}\right)=\left(u_{1}, v_{1}, \sqrt{1-u_{1}^{2}-v_{1}^{2}}\right),\left(u_{1}, v_{1}\right) \in U_{1}=\left\{\left(u_{1}, v_{1}\right) \in \mathbb{R}^{2}: u_{1}^{2}+v_{1}^{2}<1\right\} \\
& \quad \overrightarrow{\sigma_{2}}\left(u_{2}, v_{2}\right)=\left(u_{2}, \sqrt{1-u_{2}^{2}-v_{2}^{2}}, v_{2}\right),\left(u_{2}, v_{2}\right) \in U_{2}=\left\{\left(u_{2}, v_{2}\right) \in \mathbb{R}^{2}: u_{2}^{2}+v_{2}^{2}<1\right\} \tag{8}
\end{align*}
$$

Find the transition map from $\overrightarrow{\boldsymbol{\sigma}_{\mathbf{1}}}$ to $\overrightarrow{\boldsymbol{\sigma}_{\mathbf{2}}}$ along with its domain.
4. For the regular surface patch
$\vec{\sigma}(u, v)=((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u) ;(u, v) \in(0,2 \pi) \times(0,2 \pi)$, find the $1^{\text {st }}$ Fundamental Form and hence find the area of the image of $\overrightarrow{\boldsymbol{\sigma}}$.
5. Let $\boldsymbol{S}_{1}=\{(\boldsymbol{x}, \boldsymbol{y}, \mathbf{0}): \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}\}$ and $\boldsymbol{S}_{2}=\left\{\left(\boldsymbol{x}, \boldsymbol{y}, \sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}\right):(x, y) \in \mathbb{R}^{2}-\{(\mathbf{0}, \mathbf{0})\}\right\}$. For the diffeomorphism $\boldsymbol{f}: \boldsymbol{S}_{\mathbf{1}} \rightarrow \boldsymbol{S}_{2}$ given by $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \mathbf{0})=\left(\boldsymbol{x}, \boldsymbol{y}, \sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}\right)$, verify if \boldsymbol{f} is (a) Isometry, (b) conformal map, (c) equiareal map.
6. Suppose a regular surface patch $\overrightarrow{\boldsymbol{\sigma}}$ has $1^{\text {st }}$ Fundamental form $\left(\mathbf{2}+\boldsymbol{v}^{\mathbf{2}}\right)^{2} \boldsymbol{d} \boldsymbol{u}^{2}+$ $\mathbf{2 u v d u d v}+\left(\mathbf{2}+\boldsymbol{u}^{\mathbf{2}}\right)^{2} \boldsymbol{d} \boldsymbol{v}^{\mathbf{2}}$ and the $2^{\text {nd }}$ Fundamental Form $\frac{\boldsymbol{d u d} \boldsymbol{v}}{\mathbf{2 + \boldsymbol { u } ^ { 2 } + \boldsymbol { v } ^ { 2 }}}$.
(A) Find the normal curvature of $\vec{\gamma}(\boldsymbol{t})=\overrightarrow{\boldsymbol{\sigma}}\left(\boldsymbol{t}, \boldsymbol{e}^{\boldsymbol{t}}\right)$ at $\overrightarrow{\boldsymbol{\gamma}}(\mathbf{0})$.
(B) Find the principal curvatures of $\overrightarrow{\boldsymbol{\sigma}}$ at $\overrightarrow{\boldsymbol{\sigma}}(\mathbf{0}, \mathbf{1})$.
(C) Decide whether $\overrightarrow{\boldsymbol{\sigma}}(\mathbf{0}, \mathbf{1})$ is elliptic, hyperbolic, parabolic or planar.

Birla Institute of Technology and Science, Pilani
 2nd Semester 2017-18
 Differential Geometry (MATH F342)
 Comprehensive Exam
 Part B (Open book)

Max. Time: 80 mins
Max. marks : 40
Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. Let V be a point on the line $y=2$ in $x y$-plane and let P be the point on the line segment from V to the origin O such that $\|\overrightarrow{V P}\|=2$. Find the parametric equation $\vec{\gamma}$ of the curve traced by P as V varies over the line $y=2$ with parameter $\theta=$ the angle made by the line OV with the positive x -axis. Refer to the figure below. What are the values of $\theta \in(0, \pi)$ for which $\vec{\gamma}$ is regular?

2. Find a plane unit speed smooth curve whose signed curvature is given by

$$
\begin{equation*}
\kappa_{s}(s)=-\frac{1}{s}, s>0 \tag{8}
\end{equation*}
$$

3. Find the involute $\vec{\imath}(t)$ of $\vec{\gamma}(t)=\left(\frac{t^{2}}{2}, \frac{t^{3}}{3}\right), 0<t<1$.
4. Let $\vec{\gamma}(s)$ be smooth unit speed curve in \mathbb{R}^{3} with non-vanishing constant curvature κ and non-vanishing torsion. Let $\overrightarrow{\gamma_{1}}(s)=\vec{\gamma}(s)+\frac{\vec{n}(s)}{\kappa}$. Find the curvature and torsion of $\overrightarrow{\gamma_{1}}(s)$.
5. Suppose $\vec{\gamma}(s)$ is a smooth unit speed space curve with non-vanishing curvature $\kappa(s)$ and torsion $\tau(s)$. Let $\frac{d^{n} \vec{\gamma}}{d s^{n}}=a_{n}(s) \vec{t}(s)+b_{n}(s) \vec{n}(s)+c_{n}(s) \vec{b}(s)$ for any positive integer n where $\vec{t}, \vec{n}, \vec{b}$ are respectively unit tangent, principal normal and binormal vectors of $\vec{\gamma}$. Show that for any positive integer n, we have $a_{n+1}(s)=\frac{d a_{n}}{d s}-\kappa(s) b_{n}(s)$, $b_{n+1}(s)=\frac{d b_{n}}{d s}+\kappa(s) a_{n}(s)-\tau(s) c_{n}(s)$ and $c_{n+1}(s)=\frac{d c_{n}}{d s}+\tau(s) b_{n}(s)$. Hence find $\frac{d^{4} \vec{\gamma}}{d s^{4}}$ without evaluating $\frac{d^{n} \vec{\gamma}}{d s^{n}}$ for $\mathrm{n}=2,3$.
