Birla Institute of Technology and Science, Pilani 2nd Semester 2017-18 **Differential Geometry (MATH F342) Comprehensive Exam** Part A (Closed book)

Max. Time: 100 mins

Max. marks : 50

Instructions: 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

- 1. Let $\vec{\gamma}(t)$ be a simple closed smooth unit speed plane curve with period l and $\kappa_s(t)$ denote its signed curvature. Show that $\int_0^l \frac{d\kappa_s}{dt} \vec{\gamma}(t) dt = \vec{0}$. [8]
- 2. Let $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z 1)^2 = 1\}$ and $N = (0, 0, 2) \in S$. Find a surface patch $\vec{\sigma} \colon \mathbb{R}^2 \to S$ such that $\vec{\sigma}(u, v) = (S \cap L) - \{N\}$ where L is the line segment joining (u, v, 0) to N. Also find an open set W of \mathbb{R}^3 such that $\vec{\sigma}(\mathbb{R}^2) =$ $S \cap W$. [8]
- 3. Let $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. Let $\overrightarrow{\sigma_i} : U_i \to S, i = 1, 2$ be surface patches of S defined by

$$\overline{\sigma_1}(u_1, v_1) = \left(u_1, v_1, \sqrt{1 - u_1^2 - v_1^2}\right), (u_1, v_1) \in U_1 = \{(u_1, v_1) \in \mathbb{R}^2 : u_1^2 + v_1^2 < 1\},\$$

$$\overline{\sigma_2}(u_2, v_2) = \left(u_2, \sqrt{1 - u_2^2 - v_2^2}, v_2\right), (u_2, v_2) \in U_2 = \{(u_2, v_2) \in \mathbb{R}^2 : u_2^2 + v_2^2 < 1\},\$$

$$\overline{\sigma_2}(u_2, v_2) = \left(u_2, \sqrt{1 - u_2^2 - v_2^2, v_2}\right), (u_2, v_2) \in U_2 = \{(u_2, v_2) \in \mathbb{R}^2 : u_2^2 + v_2^2 < 1\}.$$

Find the transition map from $\overrightarrow{\sigma_1}$ to $\overrightarrow{\sigma_2}$ along with its domain. [8]

ansition map from σ_1 to σ_2 along with its domain.

- 4. For the regular surface patch
- $\vec{\sigma}(u,v) = ((2+\cos u) \cos v, (2+\cos u) \sin v, \sin u); (u,v) \in (0,2\pi) \times (0,2\pi),$ find the 1st Fundamental Form and hence find the area of the image of $\vec{\sigma}$. [8]
- 5. Let $S_1 = \{(x, y, 0) : x, y \in \mathbb{R}\}$ and $S_2 = \{(x, y, \sqrt{x^2 + y^2}) : (x, y) \in \mathbb{R}^2 \{(0, 0)\}\}$. For the diffeomorphism $f: S_1 \to S_2$ given by $f(x, y, 0) = (x, y, \sqrt{x^2 + y^2})$, verify if f is (a) Isometry, (b) conformal map, (c) equiareal map. [10]
- 6. Suppose a regular surface patch $\vec{\sigma}$ has 1st Fundamental form $(2 + v^2)^2 du^2 + v^2$ $2uvdudv + (2+u^2)^2 dv^2$ and the 2nd Fundamental Form $\frac{dudv}{2+u^2+v^2}$. (A) Find the normal curvature of $\vec{\gamma}(t) = \vec{\sigma}(t, e^t)$ at $\vec{\gamma}(0)$. (B) Find the principal curvatures of $\vec{\sigma}$ at $\vec{\sigma}(0, 1)$. (C) Decide whether $\vec{\sigma}(0, 1)$ is elliptic, hyperbolic, parabolic or planar. [2+4+2]

Birla Institute of Technology and Science, Pilani 2nd Semester 2017-18 Differential Geometry (MATH F342) Comprehensive Exam Part B (Open book)

Max. Time: 80 mins

Max. marks : 40

Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. Let V be a point on the line y = 2 in xy – plane and let P be the point on the line segment from V to the origin O such that $\|\vec{VP}\| = 2$. Find the parametric equation $\vec{\gamma}$ of the curve traced by P as V varies over the line y = 2 with parameter θ = the angle made by the line OV with the positive x-axis. Refer to the figure below. What are the values of $\theta \in (0, \pi)$ for which $\vec{\gamma}$ is regular? [6]

2. Find a plane unit speed smooth curve whose signed curvature is given by $\kappa_s(s) = -\frac{1}{s}, s > 0.$ [8]

3. Find the involute
$$\vec{\iota}(t)$$
 of $\vec{\gamma}(t) = \left(\frac{t^2}{2}, \frac{t^3}{3}\right), 0 < t < 1.$ [6]

- 4. Let $\vec{\gamma}(s)$ be smooth unit speed curve in \mathbb{R}^3 with non-vanishing constant curvature κ and non-vanishing torsion. Let $\vec{\gamma_1}(s) = \vec{\gamma}(s) + \frac{\vec{n}(s)}{\kappa}$. Find the curvature and torsion of $\vec{\gamma_1}(s)$. [10]
- 5. Suppose γ̃(s) is a smooth unit speed space curve with non-vanishing curvature κ(s) and torsion τ(s). Let dⁿỹ/dsⁿ = a_n(s)t̃(s) + b_n(s)ñ(s) + c_n(s)b̃(s) for any positive integer n where t̃, ñ, b̃ are respectively unit tangent, principal normal and binormal vectors of γ̃. Show that for any positive integer n, we have a_{n+1}(s) = da_n/ds κ(s)b_n(s), b_{n+1}(s) = db_n/ds + κ(s)a_n(s) τ(s)c_n(s) and c_{n+1}(s) = dc_n/ds + τ(s)b_n(s). Hence find d⁴γ̃/ds⁴ without evaluating dⁿγ̃/dsⁿ for n = 2, 3. [10]