Birla Institute of Technology and Science, Pilani
 2nd Semester 2017-18
 Differential Geometry (MATH F342)
 Mid-semester Test (Closed book)

Max. Time: 90 mins
Max. marks : 70
Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. A disk of radius 1 , initially having center at $(0,1)$, rolls in anticlockwise direction over X -axis. (A) Find the parametric equation of the curve traced by point P of the rolling disk, initially having coordinates $\left(0, \frac{3}{2}\right)$. (B) Find all the points where this parametrized curve is not regular. (C) Find a level curve containing the image of this parameterized curve for one roll of the disk.
$[4+3+3]$
2. The equation of a curve C in polar coordinates is $r=\sin \theta \tan \theta, 0<\theta<\pi / 2$. Find the parameterization of C in terms of parameter θ. Show that it has a reparameterisation $\vec{\gamma}^{*}(t)=\left(\frac{1-t}{2}, \frac{(1-t)^{2}}{\sqrt{4-4 t^{2}}}\right), 0<t<1$.
3. Find the formula for the curvature of a curve with equation $r=f(\theta)$ in polar cordinates. Hence find the curvature of the cardioid with equation $r=1+\cos \theta$.
4. Define the signed normal and the signed curvature of a smooth unit speed plane curve. Let $\vec{\gamma}(s)$ be a smooth unit speed plane curve and let $\vec{t}(s), \overrightarrow{n_{s}}(s)$ denote respectively the unit tangent and signed normal of $\vec{\gamma}(s)$. Show that $\frac{d \overrightarrow{n_{s}}}{d s}(s)=-\kappa_{s}(s) \vec{t}(s)$.
5. Show that the evolute of the parabola $\vec{\gamma}(t)=\left(t, t^{2}\right)$ satisfies the equation $27 X^{2}=16\left(Y-\frac{1}{2}\right)^{3}$.
6. Let $\vec{\gamma}(t)=\left(6 t, 3 t^{2}, t^{3}\right), t \in \mathbb{R}$. Find its curvature $\kappa(t)$ and torsion $\tau(t)$. Hence verify if $\vec{\gamma}(t)$ is a general helix or not.
7. For a smooth unit speed curve $\vec{\gamma}(s)$ with non-vanishing curvature in \mathbb{R}^{3}, let $\vec{\gamma}^{*}(s)=$ $\vec{n}(s)$, the unit principal normal to $\vec{\gamma}(s)$. Is $\vec{\gamma}^{*}(s)$ regular? If yes, then find the curvature $\kappa^{*}(s)$ of $\vec{\gamma}^{*}(s)$.
