BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI Second Semester 2022-23
 MATH F342 : Differential Geometry Mid Semester Examination (Closed Book)

March 13, 2023
Max. Marks: 60
Max. Time: 90 Minutes

1. Consider a circle of radius one.

Let A be a point on the circle and N be the point of intersection of tangent through M and the line passing through O and A. If the point P is the point of intersection of the line passing through A and parallel to the line $M N$, and the line passing through N and perpendicu-
 lar to the line $M N$.

Find the parametrization for the locus of the point P.
2. Show that the radius of curvature ρ and radius of torsion σ of the curve $\vec{r}(u)=$ $(\cos u, \sin u, \cos 2 u)$ at $u=\pi / 4$ satisfy $\rho=6 \sigma$.
3. Prove that the tangents to two different evolutes corresponding to two constants c_{1} and c_{2} drawn from the same point of the given curve are inclined to each other at a constant angle $c_{1}-c_{2}$ (Recall that the parametrization for the evolute is $\vec{R}=\vec{r}+\rho \vec{n}+\rho \tan (\psi+c) \vec{b})$.
4. Show that the necessary and sufficient condition that a curve be a helix is that

$$
\begin{equation*}
\left[\vec{r}^{\prime \prime}, \vec{r}^{\prime \prime \prime}, \vec{r}^{(i v)}\right]=0 \tag{8}
\end{equation*}
$$

5. Discuss the nature of the points on the surface $\vec{r}(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$. [6]
6. Determine the angle between the parametric curves of the surface

$$
\begin{equation*}
\vec{r}(u, v)=(u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha) . \tag{8}
\end{equation*}
$$

7. Show that the tangent plane of one-sheeted hyperboloid $x^{2}+y^{2}-z^{2}=1$ at point $(x, y, 0)$ is parallel to the z-axis.
8. Determine $\phi(v)$ so that the surface given by

$$
\begin{equation*}
x=u \cos v, y=u \sin v, z=\phi(v) \tag{8}
\end{equation*}
$$

shall be isometric to the surface of revolution.

