BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI

Second Semester 2022-23
MATH F342 : Differential Geometry Comprehensive Examination (Closed Book)
May 08, 2023
Max. Marks: 80
Max. Time: 180 Mintues
ID No.:
Max marks.: 30
PART A
Max. Time: 60 Minutes

1. Fill in the blanks
(a) The equation of the tangent plane at $(1,1,0)$ on the surface $\vec{r}(u, v)=\left(u, v, u^{2}-v^{2}\right)$ is

Ans:
(b) The principal radii of curvature of the surface with its first fundamental form and second fundamental form as $I=d u^{2}+\left(u^{2}+a^{2}\right) d v^{2}$ and $I I=-\frac{a}{\sqrt{a^{2}+u^{2}}} d u d v$, respectively, where $a \in \mathbb{R}$, are given by \longrightarrow.
Ans:
(c) The parameter of the distribution of the helicoid $\vec{R}(u, v)=(v \cos u, v \sin u, \alpha u)$ is - . Ans:
(d) The direction coefficients of the curve which makes an angle $\pi / 2$ with the curve $v=$ constant on the surface with first fundamental form as $a^{2} d u^{2}+a^{2} \sin ^{2} u d v^{2}$ is given by
\qquad
Ans:
(e) The absolute value of the geodesic curvature of the curve $v=\pi$ on the surface $\vec{r}(u, v)=$ $(\cos u \cos v, \sin u \cos v, \sin v)$ is - .
Ans:
(f) The orthogonal trajectory of the family of curves $d u+2\left(u^{2}+1\right) d v=0$ on the surface $\vec{r}(u, v)=(u \cos v, u \sin v, 1-v)$ is given by -
Ans:
2. State whether the following statements are TRUE or FALSE.
(i) Let $\vec{\gamma}(t)$ be a unit speed curve in \mathbb{R}^{3}, and assume that its curvature $\kappa(t)$ is non-zero for all t. Define a new curve $\vec{\delta}$ by $\vec{\delta}(t)=\frac{d \vec{\gamma}(t)}{d t}$. If s is the arc-length parameter of $\vec{\delta}$, then $\frac{d s}{d t}=\frac{d \kappa}{d t}$.
(ii) Let $\vec{\gamma}$ be a regular curve. The involute of the evolute of $\vec{\gamma}$ is a parallel curve of $\vec{\gamma}$.
(iii) The surface with the first fundamental form as $a^{2} \cosh ^{2} v d u^{2}+a^{2} \cosh ^{2} v d v^{2}$ and the second fundamental form as $a^{3} \cosh ^{2} v d u d v$ is a minimal surface.
(iv) The value of the Gaussian curvature is independent of the parameters chosen.
(v) When the lines of curvature are parametric curves then $\vec{N}_{1}=\frac{L}{E} \vec{r}_{1}$.
(vi) The torsion at a point of an asymptotic line on a surface is $\pm \sqrt{K}$.

BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 Second Semester 2022-23
 MATH F342 : Differential Geometry Comprehensive Examination (Closed Book)

May 08, 2023
Max. Marks: 80
Max. Time: 180 Mintues
Max marks.: 50
PART B
Max. Time: 120 Minutes
Instructions : 1) Use arrow notation on top of all vectors. 2) All notations used in question paper are standard. 3) Explain all the steps.

1. For a curve C in a plane, the pedal of C with respect to a point P in the plane is the locus traced by the foot A of the perpendicular from P to the tangent to C at a point Q varying on C. Find a parametrization of the pedal of the unit circle $\vec{r}(t)=(\sin t, \cos t) ; 0 \leq t<2 \pi$ from the point $P=(-2,0)$ in the plane.
2. Show that evolute of a parametrized curve $\vec{r}(t)=(x(t), y(t))$ has parametric equation

$$
\left(x+\frac{y^{\prime}\left(x^{2}+y^{2}\right)}{y^{\prime} x^{\prime \prime}-x^{\prime} y^{\prime \prime}}, y-\frac{x^{\prime}\left(x^{2}+y^{\prime 2}\right)}{y^{\prime} x^{\prime \prime}-x^{\prime} y^{\prime \prime}}\right) .
$$

Hence show that evolute of cardioid with polar equation $r=1+\cos \theta, 0<\theta<\pi$ is again a cardioid.
3. Show that if at a point P of the surface, ϕ denotes the angle between the principal normal \vec{n} of the curve \vec{r} and the surface normal \vec{N}, then $\kappa_{n}=\kappa \cos \phi$.
4. Let κ_{1}, κ_{2} denote the principal curvatures of the surface $\vec{\sigma}(u, v)=\left(u \cos v, u \sin v, u^{2}+v\right)$, $u>0,0 \leq v \leq 2 \pi$. Find $\kappa_{1} \kappa_{2}$ at all the points of the curve $\vec{r}(v)=\vec{\sigma}(1, v), 0 \leq v \leq 2 \pi$.
5. Determine the asymptotic lines for the Enneper's surface

$$
\begin{equation*}
\vec{r}(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+u^{2} v, u^{2}-v^{2}\right) . \tag{6}
\end{equation*}
$$

6. Find the curve conjugate to the parallels $u=$ constant on the sphere.
7. Prove that two directions given by $P d u^{2}+2 Q d u d v+R d v^{2}=0$ are orthogonal on a surface iff $E R-2 Q F+G P=0$.
8. For the ruled surface formed by the principal normals of a curve, find the parameter of distribution and hence obtain its Gaussian curvature.
9. Prove/disprove the following

$$
\begin{equation*}
H\left[\vec{N}, \vec{N}_{1}, \overrightarrow{r_{1}}\right]=E M-F L \text { and } H\left[\vec{N}, \overrightarrow{N_{1}}, \overrightarrow{r_{2}}\right]=F M-G L . \tag{5}
\end{equation*}
$$

> *** All The Best ***

