BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI Second Semester 2022-23 MATH F342 : Differential Geometry Comprehensive Examination (Closed Book)

May 08, 2023	Max. Marks: 80	Max. Time: 180 Mintues
Name:		ID No.:
Max marks.: 30	PART A	Max. Time: 60 Minutes
1. Fill in the blanks		$[6 \times 3 = 18]$
		(1

(a) The equation of the tangent plane at (1, 1, 0) on the surface $\vec{r}(u, v) = (u, v, u^2 - v^2)$ is ______.

Ans:

- (b) The principal radii of curvature of the surface with its first fundamental form and second fundamental form as $I = du^2 + (u^2 + a^2)dv^2$ and $II = -\frac{a}{\sqrt{a^2 + u^2}}dudv$, respectively, where $a \in \mathbb{R}$, are given by ——. Ans:
- (c) The parameter of the distribution of the helicoid $\vec{R}(u, v) = (v \cos u, v \sin u, \alpha u)$ is ——. Ans:
- (d) The direction coefficients of the curve which makes an angle $\pi/2$ with the curve v =constant on the surface with first fundamental form as $a^2 du^2 + a^2 \sin^2 u dv^2$ is given by _____.

Ans:

- (e) The absolute value of the geodesic curvature of the curve $v = \pi$ on the surface $\vec{r}(u, v) = (\cos u \cos v, \sin u \cos v, \sin v)$ is ——. Ans:
- (f) The orthogonal trajectory of the family of curves $du + 2(u^2 + 1)dv = 0$ on the surface $\vec{r}(u, v) = (u \cos v, u \sin v, 1 v)$ is given by——. Ans:
- 2. State whether the following statements are TRUE or FALSE. $[6 \times 2=12]$
 - (i) Let $\vec{\gamma}(t)$ be a unit speed curve in \mathbb{R}^3 , and assume that its curvature $\kappa(t)$ is non-zero for all t. Define a new curve $\vec{\delta}$ by $\vec{\delta}(t) = \frac{d\vec{\gamma}(t)}{dt}$. If s is the arc-length parameter of $\vec{\delta}$, then $\frac{ds}{dt} = \frac{d\kappa}{dt}$.
 - (ii) Let $\vec{\gamma}$ be a regular curve. The involute of the evolute of $\vec{\gamma}$ is a parallel curve of $\vec{\gamma}$.
 - (iii) The surface with the first fundamental form as $a^2 \cosh^2 v du^2 + a^2 \cosh^2 v dv^2$ and the second fundamental form as $a^3 \cosh^2 v du dv$ is a minimal surface.
 - (iv) The value of the Gaussian curvature is independent of the parameters chosen.
 - (v) When the lines of curvature are parametric curves then $\vec{N}_1 = \frac{L}{E}\vec{r}_1$.
 - (vi) The torsion at a point of an asymptotic line on a surface is $\pm \sqrt{K}$.

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI Second Semester 2022-23 MATH F342 : Differential Geometry Comprehensive Examination (Closed Book)

	I	/
May 08, 2023	Max. Marks: 80	Max. Time: 180 Mintues
Max marks.: 50	PART B	Max. Time: 120 Minutes
Instructions : 1)	Use arrow notation on top of all vectors.	2) All notations used in question

paper are standard. 3) Explain all the steps.

- 1. For a curve C in a plane, the pedal of C with respect to a point P in the plane is the locus traced by the foot A of the perpendicular from P to the tangent to C at a point Q varying on C. Find a parametrization of the pedal of the unit circle $\vec{r}(t) = (\sin t, \cos t); \ 0 \le t < 2\pi$ from the point P = (-2, 0) in the plane. [6]
- 2. Show that evolute of a parametrized curve $\vec{r}(t) = (x(t), y(t))$ has parametric equation

$$\left(x+\frac{y'(x'^2+y'^2)}{y'x''-x'y''},y-\frac{x'(x'^2+y'^2)}{y'x''-x'y''}\right).$$

Hence show that evolute of cardioid with polar equation $r = 1 + \cos \theta$, $0 < \theta < \pi$ is again a cardioid. [6]

- 3. Show that if at a point P of the surface, ϕ denotes the angle between the principal normal \vec{n} of the curve \vec{r} and the surface normal \vec{N} , then $\kappa_n = \kappa \cos \phi$. [5]
- 4. Let κ_1 , κ_2 denote the principal curvatures of the surface $\vec{\sigma}(u, v) = (u \cos v, u \sin v, u^2 + v)$, $u > 0, \ 0 \le v \le 2\pi$. Find $\kappa_1 \kappa_2$ at all the points of the curve $\vec{r}(v) = \vec{\sigma}(1, v), \ 0 \le v \le 2\pi$. [6]
- 5. Determine the asymptotic lines for the Enneper's surface

$$\vec{r}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + u^2v, u^2 - v^2\right).$$
[6]

- 6. Find the curve conjugate to the parallels u = constant on the sphere. [5]
- 7. Prove that two directions given by $Pdu^2 + 2Qdudv + Rdv^2 = 0$ are orthogonal on a surface iff ER 2QF + GP = 0. [5]
- 8. For the ruled surface formed by the principal normals of a curve, find the parameter of distribution and hence obtain its Gaussian curvature. [6]
- 9. Prove/disprove the following

$$H[\vec{N}, \ \vec{N}_1, \vec{r_1}] = EM - FL \text{ and } H[\vec{N}, \ \vec{N}_1, \vec{r_2}] = FM - GL.$$
 [5]

$\ast\ast\ast$ All The Best $\ast\ast\ast$