Birla Institute of Technology \& Science, Pilani (Raj.)
 Second Semester 2016-2017, MATH F343 (Partial Differential Equations)
 End Semester Examination

Time: 180 Min.
Date: May 6, 2017 (Saturday)
Max. Marks: 80

1. Write solution of each question on fresh page.
2. All questions are compulsory and carry equal marks.

CLOSED BOOK QUESTIONS

Q. 1 Find the singular solution of $6 y z-6 p x y-3 q y^{2}+p q=0$, if exists.
Q. 2 Find the equation of the surface that passes through the circle $x^{2}+y^{2}=9, z=0$, and cuts orthogonally the family of surfaces $2 x z+3 y z=k(z+2)$, where k is an arbitrary constant.
Q. 3 Transform the following PDE to canonical form:

$$
4 u_{x x}+5 u_{x y}+u_{y y}+u_{x}+u_{y}=2
$$

Q. 4 Use Jacobi's method to find the complete solution of $p^{2} x+q^{2} y=z$.

OPEN BOOK QUESTIONS

Q. 1 Use the method of separation of variables to solve the following IVBP:

$$
\begin{aligned}
& u_{x x}+u_{y y}=0,0<x<\pi, 0<y<2 \pi \\
& u(x, 0)=1+\sin x-2 \sin ^{2} x, u(x, 2 \pi)=0, u(0, y)=0, u(\pi, y)=0
\end{aligned}
$$

Q. 2 Use suitable Fourier transform to solve the following IVBP:

$$
\begin{aligned}
& u_{x x}+u_{y y}=0,0<x<1,0<y<\infty \\
& u(0, y)=e^{-2 y}, u(1, y)=0, u_{y}(x, 0)=0 . .
\end{aligned}
$$

Q. 3 Solve the Neumann problem:

$$
\begin{aligned}
& u_{x x}+u_{y y}+u_{z z}=0,0<x<1,0<y<1,0<z<1 \\
& u_{x}(0, y, z)=0, u_{x}(1, y, z)=0, u_{y}(x, 0, z)=0 \\
& u_{y}(x, 1, z)=0, u_{z}(x, y, 0)=\cos (\pi x) \cos (\pi y), u_{z}(x, y, 1)=0 .
\end{aligned}
$$

Q. 4 Use Laplace transform to solve the following IVBP:

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}+\sin (\pi x), 0<x<1, t>0 \\
& u(x, 0)=0, u_{t}(x, 0)=0, u(0, t)=0, u(1, t)=0
\end{aligned}
$$

