Birla Institute of Technology \& Science, Pilani (Raj.)
 Second Semester 2016-2017, MATH F343 (Partial Differential Equations)
 Mid Semester Examination (Closed Book)

Time: 90 Min.
Date: March 07, 2017 (Tuesday)
Max. Marks: 60

1. Write solution of each question on fresh page.
2. All questions are compulsory and carry equal marks.
3. Write END in the answer sheet just after the final attempted solution.
Q. 1 Construct a partial differential equation of all planes which are at a constant distance from the origin.
Q. 2 Use the method of characteristics to solve the partial differential equation

$$
\cos (x+y) z_{x}+\sin (x+y) z_{y}=z
$$

Q. 3 The complete solution of the partial differential equation

$$
p x y+p q+q y=y z
$$

is $z=f(x, y)$. Use Charpit's method to determine $f(x, y)$.
Q. 4 Find the general solution of the partial differential equation

$$
\left(D^{3}+D^{2} D^{\prime}-D D^{\prime 2}-D^{\prime 3}\right) u=e^{x} \cos (2 y) .
$$

Q. 5 Tranform the partial differential equation

$$
y u_{x x}+3 y u_{x y}+3 u_{x}=0, y \neq 0
$$

to canonical form, and hence find its general solution.
Q. 6 Determine the solution of the initial boundary-value problem

$$
\begin{aligned}
& u_{t t}=16 u_{x x}, 0<x<\infty, t>0 \\
& u(x, 0)=\sin x, 0 \leq x<\infty \\
& u_{t}(x, 0)=x^{4} e^{x}, 0 \leq x<\infty \\
& u(0, t)=0,0 \leq t<\infty
\end{aligned}
$$

