# Birla Institute of Technology \& Science, Pilani (Raj.) <br> Second Semester 2017-2018, MATH F343 (Partial Differential Equations) End Semester Examination 

Time: 180 Min.
Date: May 14, 2018 (Monday)
Max. Marks: 80

1. Write solution of each question on fresh page.
2. All questions are compulsory and carry equal marks.

## CLOSED BOOK QUESTIONS

Q. 1 Write solution of wave equation in one dimension by using suitable conditions. Hence, find the displacement $u(x, t)$ in a tightly stretched string with fixed end points $x=0$ and $x=\pi$, which is released from the initial position $u(x)=4 \sin ^{3} x$.
Q. 2 Find solution of the Laplace equation (two dimensional) in polar coordinates.
Q. 3 An elastic rectangular membrane is stretched with fixed edges along $x=0, x=a, y=0$ and $y=b$. Find displacement of the membrane from xy-plane subject to the initial position $f(x, y)$ and initial velocity $g(x, y)$.
Q. 4 Find the heat flow in a rectangular volume where the faces $x=0, x=a, y=0, y=b, z=0$ and $z=c$ are kept at zero temperature, and the initial temperature is $f(x, y, z)$.

## OPEN BOOK QUESTIONS

Q. 1 Transform the partial differential equation

$$
y+2 z q=q(4 x p+y q)
$$

to Clairaut's form, and hence find its complete solution.
Q. 2 Solve $\left(x^{2} z_{x x}-4 x y z_{x y}+4 y^{2} z_{y y}+6 y z_{y}\right) z=x^{3} y^{4}$.
Q. 3 Use suitable Fourier transform to find heat flow in a semi-infinite rod where the finite end $x=0$ is kept at zero temperature, and the initial temperature vanishes except that it is non-zero and constant till a finite length from $x=0$.
Q. 4 Use Laplace transform to solve the following IVBP:

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}+\sin (\pi x), 0<x<1, t>0 \\
& u(x, 0)=0, u_{t}(x, 0)=0, u(0, t)=0, u(1, t)=0
\end{aligned}
$$

