Birla Institute of Technology \& Science, Pilani
 Second Semester 2021-2022
 MATH F343 (Partial Differential Equations)
 Comprehensive Examination Part A (Closed Book)

Time: 90 Min.
Date: May 14, 2022 (Saturday)
Max. Marks: 40

1. Write PART-A on the top of your answer sheet.
2. While answering, justify your steps. Just writing the final answer will receive no credit.
3. Write END after the last attempted solution.
4. You can submit PART-A any time between $9: 00 \mathrm{AM}$ and $10: 00 \mathrm{AM}$ to start PART-B. Ideally you should not spend more than 90 minutes on part-A.
5. Show that the problem

$$
\begin{gathered}
\Delta u=0 \quad \text { in } \Omega \\
u=f(x) \quad \text { on } \partial \Omega,
\end{gathered}
$$

has a unique solution(if it exists), where Ω is a bounded domain in \mathbb{R}^{3}.
2. Find the general solution of the problem

$$
\begin{equation*}
u_{x x}-4 u_{x y}+4 u_{y y}=e^{2 x+y} . \tag{6}
\end{equation*}
$$

3. Verify the compatibility condition for the existence of a solution and determine the solution to the initial boundary value problem

$$
\begin{array}{cc}
u_{t t}=16 u_{x x} & 0<x<\infty, t>0 \\
u(x, 0)=\cos x & 0 \leq x<\infty \\
u_{t}(x, 0)=x^{2} & 0 \leq x<\infty \\
u(0, t)=0 & t \geq 0
\end{array}
$$

4. Find the solution to the problem $\Delta u=0$ in the disk $r<a$ under the boundary condition $\frac{\partial u}{\partial r}-h u=\theta$ when $r=a$, where h is a constant. Assume that the solution is bounded in the disk and $u(r, \theta)=u(r, \theta+2 \pi)$.
5. Solve

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<10, t>0, \\
& u(0, t)=20, u(10, t)=40 \quad t \geq 0, \\
& u(x, 0)=2 x+20 \quad 0 \leq x \leq 10 .
\end{aligned}
$$

