Birla Institute of Technology \& Science, Pilani
MATH F343 (Partial Differential Equations)
Mid-Semester Examination (Closed Book)
Max. Marks: 7
March 12, 2022
Time: 90 Min.

1. Let $a, b, c, d \in \mathbb{R}$ be such that $c^{2}+d^{2} \neq 0$. Find a general condition on constants a, b, c, d so that the Cauchy problem

$$
\begin{aligned}
& a u_{x}+b u_{y}=e^{x+y}, x, y, \in \mathbb{R} \\
& u(x, 0)=0 \text { on } c x+d y=0,
\end{aligned}
$$

admits a unique solution.
2. Find complete integral of the PDE

$$
\begin{equation*}
p q z=p^{2}\left(x q+p^{2}\right)+q^{2}\left(y p+q^{2}\right) . \tag{4}
\end{equation*}
$$

3. Use the method of separation of variables to find a solution to

$$
\begin{equation*}
x^{2} v_{x}^{2}+y^{2} v_{y}^{2}=1 . \tag{5}
\end{equation*}
$$

4. Solve

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=x e^{t}, u(x, 0)=\sin x, u_{t}(x, 0)=0 \tag{6}
\end{equation*}
$$

5. Reduce

$$
u_{x x}+2 u_{x y}+4 u_{y y}+2 u_{x}+3 u_{y}=0
$$

into the canonical form.
6. Use the method of characteristics to solve the Cauchy problem (Do not use Charpit's method)

$$
\begin{equation*}
u_{x}^{2}+u_{y}^{2}=1, u=0 \text { along } x^{2}+y^{2}=1 . \tag{14}
\end{equation*}
$$

7. (a) Find general solution of $u_{t t}-c^{2} u_{x x}=0,-\infty<x<\infty, t>0$.
(b) Consider the problem

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0 & 0<x<2, t>0, \\
u(x, 0)=x^{2}(2-x)^{2}, u_{t}(x, 0)=0 & 0 \leq x \leq 2, \\
u_{x}(0, t)=0, u_{x}(2, t)=0 & 0 \leq t<\infty
\end{array}
$$

Without using the method of separation of variables, find $u\left(\frac{3}{2}, 4\right)$.
8. Find a solution to the problem:

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0 & 0<x<\infty, t>0 \\
u(x, 0)=x^{2}, u_{t}(x, 0)=0 & 0 \leq x<\infty \tag{12}\\
u_{x}(0, t)+2 u(0, t)=0 & 0 \leq t<\infty
\end{array}
$$

