Birla Institute of Technology \& Science, Pilani

Mid Semester Examination (Closed Book), Second Semester 2022-2023
Partial Differential Equations (MATH F343)
Date: $15^{\text {th }}$ March, 2023
Max. Time: 90 Minutes
Max. Marks: 70
Note. Answer all questions with proper justification. Start answering each question on a fresh page.

1. Obtain a first-order PDE
(a) of all spheres of radius r having center in the $x y$-plane.
(b) by eliminating f from $z=x^{n} f(y / x)$.
2. Use Charpit's method to find a complete integral of $\left(p^{2}+q^{2}\right) x=p z$.
3. Using Jacobi's method find the complete integral of $z+2 u_{z}-\left(u_{x}+u_{y}\right)^{2}=0$.
4. Decide whether the equation $3 u_{x x}+4 u_{x y}-\frac{3}{4} u_{y y}=0$ is elliptic, parabolic, or hyperbolic. Then reduce the equation into canonical form. Hence, show that the general solution is given by $u=f\left(y-\frac{3}{2} x\right)+g\left(y+\frac{1}{6} x\right)$.
5. Solve $\left(D^{2}-D D^{\prime}-2 D\right) z=\sin (3 x+4 y)$.
6. Consider the following IVP

$$
\begin{array}{rlrl}
u_{t t} & =c^{2} u_{x x}, & & -\infty<x<\infty, t>0 \\
u(x, 0) & =f(x), & & -\infty<x<\infty \\
u_{t}(x, 0) & =g(x), & -\infty<x<\infty
\end{array}
$$

(a) If $f(x)$ and $g(x)$ are periodic functions of period $2 L$, then show that $u(x, t)$ is periodic in x of period $2 L$.
(b) If $f(x)$ and $g(x)$ are odd functions, then show that $u(x, t)$ is odd in x.
7. Determine the solution of the following IBVP

$$
\begin{align*}
u_{t t} & =16 u_{x x}, \quad 0<x<\infty, t>0, \\
u(x, 0) & =\sin x, \quad 0 \leq x<\infty \\
u_{t}(x, 0) & =x^{2}, \quad 0 \leq x<\infty \\
u(0, t) & =0, \quad t \geq 0 \tag{10}
\end{align*}
$$

