Birla Institute of Technology \& Science, Pilani (Raj.)
 First Semester 2022-2023, MATH F421 - CS F451
 End-semester Exam (Open Book)

Time: 75 Minutes
Date: December 23, 2022
Max. Marks: 35
Part-A
Calculators are not allowed.
Q. 1 Find the number of possible routes from the start $(0,0)$ to the corner $(5,4)$ for the grid in Figure 1. [7]

Figure 1:
Q. 2 Using exponential generating function, find the number of n-letter strings which can be constructed from the letters of the word BARBER.
Q. 3 Determine a recurrence relation and initial conditions for the number of ordered partitions of n into non-zero parts with numbers 1,2 , or 5 .
Q. 4 Draw a board B with rook polynomial $1+20 x+90 x^{2}$.
Q. 5 Using Polya's Formula, find, in how many ways can we 3-color the eight regions of pinwheel in Figure 2 having 4 black, 2 gold, and 2 blue regions, provided back of each region remains grey.

Figure 2:

Birla Institute of Technology \& Science, Pilani (Raj.)
 First Semester 2022-2023, MATH F421 - CS F451
 End-semester Exam (Open Book)

Time: 105 Minutes
Date: December 23, 2022
Max. Marks: 55
Part-B
Calculators are not allowed.
Q. 1 Using Inclusion-Exclusion Principle, find, how many ways are there to distribute 18 toys to six children if each child receives a toy and the 18 toys can be divided into three groups of $6,7,5$ each, and the toys within each group are identical?
Q. 2 Using Burnside lemma, find, how many ways are there to put 10 identical balls into 3 identical boxes, such that none of the boxes has more than 5 balls? (Hint: mark the boxes as 1, 2, 3 and consider symmetry group S_{3}).
Q. 3 Let X be a set of 12 distinct numbers from $1,2, \ldots, 100$. Show that there are two subsets of X each having exactly 5 distinct elements and such that the sum of their elements is the same.
Q. 4 With justification, find $r\left(C_{3}, C_{4}\right)$ where C_{3} is a cycle of length 3, i.e., a triangle and C_{4} is a cycle of length 4.
Q. 5 Compute the value for $S(n, n-2)$. Hence,find a, b, c such that $S(n, n-2)=C(n, a)+b C(n, c) .[11]$

