BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 Comprehensive Exam: Second Semester, 2020-21
 Stochastic Processes and their Applications (MATH F424)

Max. Time : 120+15 mins
May 13, 2021
Max. Marks: 35

Name :
ID No. :

1. Consider a machine that operates for a T amount of time and then fails. Once it fails, it gets repaired with a repair time R, which is also a random variable (independent of T). Let T and R both are exponentially distributed with means μ and λ, respectively. The machine is as good as new after the repair is complete. Find the probability that a machine is up at time t given that it was up at time 0 (note that the machine could have gone through many failures and repairs up to time t).
2. Let $\{N(t), t \geq 0\}$ be a Poisson process with rate with parameter λ. Given that only one occurrence of a Poisson process $N(t)$ has occurred by epoch t_{0} then find $P\left[T_{1} \leq x\right]$ where $0 \leq x \leq t_{0}$.
3. Consider the process of customers arriving at a restaurant. Suppose the customers arrive in parties (or batches) of variable sizes. The successive party sizes are iid random variables and are binomially distributed with parameters n and p. The parties themselves arrive according to a Poisson process with a rate of λ per hour. Let $C(t)$ be the total number of customers arrivals up to time t, find $E[C(t)]$ and $\operatorname{Var}[C(t)]$.
4. Let $\{N(t), t \geq 0\}$ be a Poisson process with parameter λ. Find $\operatorname{Cov}[N(s), N(t)], t \geq s>0$.
5. Let $\{B(t): t \geq 0\}$ is the standard Brownian motion.
(i) Find a function $a(t)>0$ such that an $B(t) \in(-a(t), a(t))$ at time $t>0$ with probability $1 / 2$. [6]
(ii) Find probability that an $B(t)$ is below zero at time 1 and above zero at time 2 .
6. Suppose the price (in USD) of a stock at time t (in days) is given by

$$
V(t)=e^{2 B(t)}, t \geq 0 .
$$

where $\{B(t): t \geq 0\}$ is the standard Brownian motion. Suppose an investor owns 500 shares of the stock at time 0 . He plans to sell the shares as soon as its price reaches $\$ 3$. What is the probability that he has to wait more than 30 days to sell the stock?

