Second Semester 2022-2023

Mid-Semester Examination

Course Title	$:$ Stochastic Processes and their Applications
Nature of Exam	$:$ Open Book
Marks	$: 30 \mathrm{Marks}$
Duration	$: 90 \mathrm{Mins}$

No. of Pages $=2$
No. of Questions $=5$

Note to Students:

1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.
2. It is an open book exam. The text book (J Medhi), the reference book (V G Kulkarni) and their photocopies are allowed.
3. Lecture slides and handwritten class notes (or photocopies) are allowed.
4. Solution manuals, previous year solutions are NOT allowed.
5. Use of a scientific calculator is allowed.
Q.1. Let $N(t)$ be a Poisson process such that $2 P(N(1)=0)=4 P(N(1)=1)+5 P(N(1)=2)$.
Find the probability that the waiting time between the first and the second arrival is greater than $5 / 2$.
Q.2. A fair coin is tossed respectively until two consecutive heads, and after that the game stopes. Let N denotes the number of tosses required to stop the game.
(a) Show that this game can be modelled as a Markov chain with a four states: $\{\mathrm{H}, \mathrm{H}\}$, $\{\mathrm{H}, \mathrm{T}\},\{\mathrm{T}, \mathrm{H}\}$ and $\{\mathrm{T}, \mathrm{T}\}$ by constructing its Transition Probability Matrix. [2] (b) Draw the Transition graph for this process and identify its communication class.
$\begin{array}{ll}\text { (c) Identify open and closed classes. } & \text { [1] } \\ \text { (d) Identity }\end{array}$
(d) Identity the persistent and transient classes.
(d) Find the stationary distribution.
(e) How would you relate $P(N=n)$ (the probability that game stopes exactly in n tosses) to the Transition probability matrix?
Q.3. Suppose that there are three independent and identically behaving machines in the shop. If a machine is up at the beginning of a day, it stays up at the beginning of the next day with probability p. and if it is down at the beginning of a day, it stays down at the beginning of the next day with probability q, where $0<p, q<1$ are fixed numbers. Let X_{n} be the number of working machines at the beginning of the nth day. Show that $\left\{X_{n}: n \geq 0\right\}$ is a DTMC, and find its transition probability matrix.
Q.4. Let $T_{i}, 1 \leq i \leq k$ be k IID exponential random variables with parameter λ. Define $T=\operatorname{Max}\left(T_{i}, 1 \leq i \leq k\right)$.
(a) Find $E[T]$ (explain all the steps).
(b) Find the CDF for T.
Q.5. Let $N(t), t \geq 0$ be a Poisson process with arrival rate parameter λ. Prove or disprove $\operatorname{Cov}[N(t), N(t+s)]=\lambda s$.
