Birla Institute of Technology & Science, Pilani Second Semester 2022 - 2023 Mid-Semester Examination

= 2

= 5

: Stochastic Processes and their Applications	
: 90 Mins	No. of Pages No. of Questions
	: Open Book : 30 Marks

Note to Students:

- All parts of a question should be answered consecutively. Each answer should start from a fresh page.
- It is an open book exam. The text book (J Medhi), the reference book (V G Kulkarni) and their photocopies are allowed.
- 3. Lecture slides and handwritten class notes (or photocopies) are allowed.
- 4. Solution manuals, previous year solutions are NOT allowed.
- 5. Use of a scientific calculator is allowed.
- Q.1. Let N(t) be a Poisson process such that

2 P(N(1) = 0) = 4P(N(1) = 1) + 5P(N(1) = 2).

Find the probability that the waiting time between the first and the second arrival is greater than 5/2. [3]

Q.2. A fair coin is tossed respectively until two consecutive heads, and after that the game stopes. Let N denotes the number of tosses required to stop the game.

(a) Show that this game can be modelled as a Markov chain with a four states:	{H,H},
 {H,T}, {T,H} and {T,T} by constructing its <i>Transition Probability Matrix</i>. (b) Draw the Transition graph for this process and identify its communication classical descent of the second descent of the second descent desc	[2] ass.
(c) Identify open and closed closes	[1]

(c) identify open and closed classes.	
(d) Identity the persistent and transient classes.	[1]
(d) Find the stationary distribution.	[1]
(c) How would you relate $P(N - n)$ (d)	[1]
(c) How would you relate $P(N = n)$ (the probability that game stopes exactly tosses) to the Transition probability matrix?	in n
to the Transition probability matrix?	[1]

Q.3. Suppose that there are three independent and identically behaving machines in the shop. If a machine is up at the beginning of a day, it stays up at the beginning of the next day with probability p, and if it is down at the beginning of a day, it stays down at the beginning of the next day with probability q, where 0 < p, q < 1 are fixed numbers. Let X_n be the number of working machines at the beginning of the nth day. Show that $\{X_n : n \ge 0\}$ is a DTMC, and find its transition probability matrix. [7]

Q.4. Let T_i , $1 \le i \le k$ be k IID exponential random variables with parameter λ . Define $T = Max(T_i, 1 \le i \le k)$.

(a) Find $E[T]$ (explain all the steps).		[5]
(b) Find the CDF for <i>T</i> .		[4]

Q.5. Let $N(t), t \ge 0$ be a Poisson process with arrival rate parameter λ . Prove or disprove $Cov[N(t), N(t+s)] = \lambda s$.

[4]
