Birla Institute of Technology \& Science, Pilani
 MATH F425 (Numerical Linear Algebra)
 Second Semester 2022-2023
 Mid-Sem Examination (Closed Book)
 Date: March 13, 2023 (Monday)

Time: 90 Minutes
Max. Marks: 35

1. Notations and symbols have their usual meaning.
2. Start new question on fresh page. Moreover, answer each subpart of a question in continuation.
3. Write END at the end of the last attempted question.
Q.1(a) If A and B are symmetric matrices of order n, find the flop-counts for $C=A+B$
(i) without considering symmetricity and (ii) taking the advantages of the symmetry.
(b) Consider the system of equation $3 x+y-z=5,5 x-3 y+2 z=7$ and $2 x-y+z=3$. Find a permutation matrix P, lower and upper triangular matrices L and U, respectively, such that $P A=L U$. Determine the growth factor.
Q. 2 Consider $-x+3 y+z=1,2 x+y+4 z=1$, and $4 x+2 y+z=1$.
(i) Discuss the ill-conditioning of the given linear system.
(ii) If $x^{*}=[0.06,0.32,0.14]^{T}$ be an approximate solution of the given system, find the residual r and explain the idea of iterative refinement method to provide next better approximate solution.
Q. 3 (a) Check whether matrix $A=\left(\begin{array}{ccc}4 & 2 & 3 \\ 2 & 17 & 1 \\ 3 & 1 & 5\end{array}\right)$ is positive definite or not by using Cholesky method.
(b) Find the QR factorization of A by using Householder matrix for

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right) \quad b=(1,2,3)^{T}
$$

and hence, write the expression for x which solves the system of equation $A x=b$.
Q. 4 (a) If $\sigma_{i}>0$ for $i=1,2, \ldots, r$ are the singular values of a matrix A, then show that

$$
\sigma_{\max }(A) \leq\|A\|_{F} \leq \sqrt{r} \sigma_{\max }(A)
$$

(b) Find the singular value decomposition ("reduced size") of matrix $A=\left(\begin{array}{cc}-3 & 1 \\ 6 & -2 \\ 6 & -2\end{array}\right)$.
(c) Using SVD of A, prove or disprove that $\operatorname{Cond}_{2}\left(A^{T} A\right)=\left(\operatorname{Cond}_{2}(A)\right)^{2}$.

