Birla Institute of Technology \& Science, Pilani
 MATH F425 (Numerical Linear Algebra)
 Second Semester 2022-2023
 Comprehensive Examination (Closed Book)

Time: 90 Minutes

1. Notations and symbols have their usual meaning.
2. Start new question on fresh page. Moreover, answer each subpart of a question in continuation.
3. Write END at the end of the last attempted question.
4. Fit a straight line and a quadratic to the data points $(1,1),(2,5),(1,-2),(3,4)$ by using least square and compare the results when $x=3$.
5. If possible, find the optimal choice for the relaxation factor ω by using the following matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

with the help of Jacobi's iteration matrix. Hence, find the spectral radius of the SOR iteration matrix.
3. Consider the data matrix

$$
X=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)
$$

Determine the new data set corresponding to the first principal component analysis.
4. Consider the linear system of equation $4 x-y=1, \quad-x+2 y=0$. Do two steps of steepest descent and conjugate gradient methods to solve the system using initial approximation $\mathbf{X}^{(0)}=[0,0]^{T}$. What do you observe special about CG method.
5. Consider a 4-dimensional tensor $\mathcal{X} \in \mathbb{R}^{3 \times 4 \times 4 \times 5}$. Write the tensor train (TT) format of \mathcal{X} and using a sequence of singular value decomposition as well as reshape function, find the core tensors of TT with reduced rank 2 for each core tensor. Discuss the storage complexity for full tensor and the tensor in TT format.
6. If $\mathcal{X} \in \mathbb{R}^{2 \times 3 \times 2}$ such that the two slices are

$$
X_{1}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 1
\end{array}\right) \quad \text { and } \quad X_{2}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
3 & 0 & 1
\end{array}\right) .
$$

Write the formula to compute the tensor with matrix multiplication with mode-3 where $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right)$ and hence, write the slice of the resulting tensor with fixing the last index as 1.

Birla Institute of Technology \& Science, Pilani
 MATH F425 (Numerical Linear Algebra)
 Second Semester 2022-2023
 Comprehensive Examination (Open Book)
 Date: May 06, 2023 (Saturday)

Time: 90 Minutes
Max. Marks: 22

1. Notations and symbols have their usual meaning.
2. Start new question on fresh page. Moreover, answer each subpart of a question in continuation.
3. Write END at the end of the last attempted question.
4. Determine all values of a, b and c for which the matrix $A=\left(\begin{array}{ccc}4 & a+b-2 c & 0 \\ -1 & 3 & b-c \\ -a+b+c & 1 & b-2 c\end{array}\right)$ can be reduced into the form of $L L^{T}$ by using Cholesky method. Find L.
5. Is LU decomposition of a matrix A unique always? If yes, prove it, else provide a counter example by taking a matrix A of size 2×2 or of your choice.
6. Consider a linear system $A x=b$, where $A=\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 4 & 0 \\ 1 & 2 & 1\end{array}\right)$ and $b=[1,1,2]^{T}$. Suppose that $a_{11}=2$ in A is replaced by $a_{11}=1.99$ and b is changed to $b_{1}=[1,1,1.99]^{T}$. How large a relative change can this change produce in the solution to $A X=b$.
7. (a) If λ_{i} for $i=1, \ldots, n$ be the eigenvalues of matrix A and $\|A\|<1$, then prove or disprove that

$$
\left\|(I-A)^{-1}-I\right\| \leq \frac{\|A\|}{1-\|A\|}
$$

(b) Let $H=I-\frac{2 u u^{T}}{u^{T} u}$ be a Householder matrix with $u \in \mathbb{R}^{n}$. Then show that
(i) $H u=-u$
(ii) $H v=v$ if $v^{T} u=0$.
(c) Show that the floating point computation of the inner product of two vectors is backward stable.
(d) Determine whether the following statements are True or False:
(i) If the determinant of a matrix A is small, then A must be close to a singular matrix.
(ii) If the zeros of a polynomial are all distinct, then they must be well-conditioned.
(iii) The factorization $P A Q=L U$ in GECP needs $\frac{2 n^{3}}{3}$ flop-count $+\left(\mathcal{O}\left(n^{2}\right)\right.$ comparisons).
(iv) $\|A B\|_{2} \leq\|A\|_{2} \frac{1}{\left\|B^{-1}\right\|_{2}}$.
(v) For positive definite matrices, the orthogonal decomposition and the SVD coincide.
5. Find the least square solution of $A X=B$ where

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
3 & 0 \\
3 & 0 \\
5 & 2
\end{array}\right)
$$

by converting into normal equation form and then solving resulting system of equations using LU decomposition with partial pivoting method. Under what condition, such a solution is unique.

