Time: 90 Minutes

- 1. Notations and symbols have their usual meaning.
- 2. Start new question on fresh page. Moreover, answer each subpart of a question in continuation.
- 3. Write **END** at the end of the last attempted question.
- 1. Fit a straight line and a quadratic to the data points (1,1), (2,5), (1,-2), (3,4) by using least square and compare the results when x = 3. [3]
- 2. If possible, find the optimal choice for the relaxation factor ω by using the following matrix

$$A = \left(\begin{array}{rrrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right),$$

with the help of Jacobi's iteration matrix. Hence, find the spectral radius of the SOR iteration matrix. [3]

3. Consider the data matrix

$$X = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right)$$

Determine the new data set corresponding to the first principal component analysis.

- 4. Consider the linear system of equation 4x y = 1, -x + 2y = 0. Do two steps of steepest descent and conjugate gradient methods to solve the system using initial approximation $\mathbf{X}^{(0)} = [0, 0]^T$. What do you observe special about CG method. [7]
- 5. Consider a 4-dimensional tensor $\mathcal{X} \in \mathbb{R}^{3 \times 4 \times 4 \times 5}$. Write the tensor train (TT) format of \mathcal{X} and using a sequence of singular value decomposition as well as reshape function, find the core tensors of TT with reduced rank 2 for each core tensor. Discuss the storage complexity for full tensor and the tensor in TT format. [4]
- 6. If $\mathcal{X} \in \mathbb{R}^{2 \times 3 \times 2}$ such that the two slices are

$$X_1 = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
 and $X_2 = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix}$.

Write the formula to compute the tensor with matrix multiplication with mode-3 where $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{pmatrix}$ and hence, write the slice of the resulting tensor with fixing the last index as 1. [3]

END

[3]

Time: 90 Minutes

Max. Marks: 22

- 1. Notations and symbols have their usual meaning.
- 2. Start new question on fresh page. Moreover, answer each subpart of a question in continuation.
- 3. Write **END** at the end of the last attempted question.
- 1. Determine all values of a, b and c for which the matrix $A = \begin{pmatrix} 4 & a+b-2c & 0 \\ -1 & 3 & b-c \\ -a+b+c & 1 & b-2c \end{pmatrix}$ can be reduced [3]

into the form of LL^T by using Cholesky method. Find L.

- 2. Is LU decomposition of a matrix A unique always? If yes, prove it, else provide a counter example by taking a matrix A of size 2×2 or of your choice. [2]
- 3. Consider a linear system Ax = b, where $A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix}$ and $b = [1, 1, 2]^T$. Suppose that $a_{11} = 2$ in A is replaced by $a_{11} = 1.99$ and b is changed to $b_1 = [1, 1, 1.99]^T$. How large a relative change can this change produce in the solution to AX = b. [3]
- 4. (a) If λ_i for i = 1, ..., n be the eigenvalues of matrix A and ||A|| < 1, then prove or disprove that

$$||(I - A)^{-1} - I|| \le \frac{||A||}{1 - ||A||}.$$

- (b) Let $H = I \frac{2uu^T}{u^T u}$ be a Householder matrix with $u \in \mathbb{R}^n$. Then show that (i) Hu = -u (ii) Hv = v if $v^T u = 0$.
- (c) Show that the floating point computation of the inner product of two vectors is backward stable.
- (d) Determine whether the following statements are True or False:
 - (i) If the determinant of a matrix A is small, then A must be close to a singular matrix.
 - (ii) If the zeros of a polynomial are all distinct, then they must be well-conditioned.
 - (iii) The factorization PAQ = LU in GECP needs $\frac{2n^3}{3}$ flop-count +($\mathcal{O}(n^2)$ comparisons).
 - (iv) $||AB||_2 \le ||A||_2 \frac{1}{||B^{-1}||_2}$.

(v) For positive definite matrices, the orthogonal decomposition and the SVD coincide. [2+2+2+2]

5. Find the least square solution of AX = B where

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 3 & 0 \\ 3 & 0 \\ 5 & 2 \end{pmatrix}$$

by converting into normal equation form and then solving resulting system of equations using LU decomposition with partial pivoting method. Under what condition, such a solution is unique. [6]

END