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1. Discuss the stability of the ODE system y′ = Ay. [3]

2. Give the geometrical interpretation of the forward Euler method. [2]

3. Show that the trapezoidal method can be viewed as a half-step of forward
Euler method followed by a half-step of backward Euler. [3]

4. For a given ODE y′ = f(y), consider the θ-method

yn = yn−1 + h[θfn + (1− θ)fn−1]

for some value θ, 0 ≤ θ ≤ 1. Find the range of θ-values such that the method
is A-stable. [4]

5. Consider the two step method

yn − yn−1 =
h

16
(9fn + 6fn−1 + fn−2).

Write the characteristic polynomials of the above method. Check if the
method is consistent. Is the method 0-stable? [4]

6. Given

dy

dx
=

1

2
(1 + x2)y2, y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12.

Use the predictor-corrector method to evaluate y(0.3) accurate upto 3-digits
after decimal. [4]

7. Describe

a. the quasilinearization procedure to construct a sequence of linear BVP
for solving nonlinear BVP, [4]

b. the extrapolation technique to accelerate the convergence of the numer-
ical methods. [4]
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8. Consider the scalar Dirichlet problem

−εu′′ + au′ = q(t),

u(0) = b1, u(1) = b2,

where a 6= 0 is a real constant and 0 < ε << 1. An upwind method
is obtained by replacing the discritization of u′ with forward or backward
Euler, depending on sign(a):

ε
h2

(−un−1 + 2un − un+1) + a
h
φn = q(tn),

φn =

{
un+1 − un, a < 0,
un − un−1, age0.

Show that A is diagonally dominant for all R = |a|h
ε

ge0. [3]

9. The following equations describe a chemical reaction

C ′ = K1(C0 − C)−R,
T ′ = K1(T0 − T ) +K2R−K3(T − TC),

0 = R−K3e
−K4/TC,

where the unknowns are the concentration C(t), the temperature T (t),and
the reaction rate per unit R(t). The constants Ki,, i = 1, 2, 3, 4 and the
functions C0 and T0 are given. Assuming that the temperature of the cooling
medium TC(t) is also given, what is the index of this DAE? Is it in Hessenberg
form? [3]

10. State and prove Cea’s Lemma. [2]

11. Consider the two point boundary value problem

−y′′ + xy = x3 − 2 in (0, 3), y(0) = 0, y(3) = 9.

Obtain the approximate solution using finite element method with h = 1,
p = 1 by showing the following steps

(a) variational formulation of the given BVP [2]

(b) Comment on the existene of the weak solution [1]

(c) Galerkin formulation [1]

(d) construction of matrices [3]

(e) Approximate solution in the interval [0, 3]. [2]

***END***
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