Birla Institute of Technology and Science, Pilani
 I Semester 2017-18
 Comrehensive Examination (Closed Book)
 MATH F444 (Numerical Solutions of Ordinary Differential Equations)
 Date: 05-12-2017 Max. Time: 180 Min. Max. Marks: 45

1. Discuss the stability of the ODE system $\mathbf{y}^{\prime}=A \mathbf{y}$.
2. Give the geometrical interpretation of the forward Euler method.
3. Show that the trapezoidal method can be viewed as a half-step of forward Euler method followed by a half-step of backward Euler.
4. For a given $\operatorname{ODE} \mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$, consider the θ-method

$$
\mathbf{y}_{n}=\mathbf{y}_{n-1}+h\left[\theta \mathbf{f}_{n}+(1-\theta) \mathbf{f}_{n-1}\right]
$$

for some value $\theta, 0 \leq \theta \leq 1$. Find the range of θ-values such that the method is A-stable.
5. Consider the two step method

$$
y_{n}-y_{n-1}=\frac{h}{16}\left(9 f_{n}+6 f_{n-1}+f_{n-2}\right) .
$$

Write the characteristic polynomials of the above method. Check if the method is consistent. Is the method 0 -stable?
6. Given

$$
\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}, \quad y(0)=1, \quad y(0.1)=1.06, \quad y(0.2)=1.12 .
$$

Use the predictor-corrector method to evaluate $y(0.3)$ accurate upto 3 -digits after decimal.
7. Describe
a. the quasilinearization procedure to construct a sequence of linear BVP for solving nonlinear BVP,
b. the extrapolation technique to accelerate the convergence of the numerical methods.
8. Consider the scalar Dirichlet problem

$$
\begin{gathered}
-\epsilon u^{\prime \prime}+a u^{\prime}=q(t), \\
u(0)=b_{1}, \quad u(1)=b_{2},
\end{gathered}
$$

where $a \neq 0$ is a real constant and $0<\epsilon \ll 1$. An upwind method is obtained by replacing the discritization of u^{\prime} with forward or backward Euler, depending on $\operatorname{sign}(a)$:

$$
\begin{gathered}
\frac{\epsilon}{h^{2}}\left(-u_{n-1}+2 u_{n}-u_{n+1}\right)+\frac{a}{h} \phi_{n}=q\left(t_{n}\right), \\
\phi_{n}= \begin{cases}u_{n+1}-u_{n}, & a<0, \\
u_{n}-u_{n-1}, & a \mathbf{g} e 0 .\end{cases}
\end{gathered}
$$

Show that A is diagonally dominant for all $R=\frac{|a| h}{\epsilon} \mathbf{g} e 0$.
9. The following equations describe a chemical reaction

$$
\begin{aligned}
C^{\prime} & =K_{1}\left(C_{0}-C\right)-R \\
T^{\prime} & =K_{1}\left(T_{0}-T\right)+K_{2} R-K_{3}\left(T-T_{C}\right), \\
0 & =R-K_{3} e^{-K_{4} / T} C,
\end{aligned}
$$

where the unknowns are the concentration $C(t)$, the temperature $T(t)$, and the reaction rate per unit $R(t)$. The constants $K_{i},, i=1,2,3,4$ and the functions C_{0} and T_{0} are given. Assuming that the temperature of the cooling medium $T_{C}(t)$ is also given, what is the index of this DAE? Is it in Hessenberg form?
10. State and prove Cea's Lemma.
11. Consider the two point boundary value problem

$$
-y^{\prime \prime}+x y=x^{3}-2 \quad \text { in }(0,3), \quad y(0)=0, \quad y(3)=9 .
$$

Obtain the approximate solution using finite element method with $h=1$, $p=1$ by showing the following steps
(a) variational formulation of the given BVP
(b) Comment on the existene of the weak solution
(c) Galerkin formulation
(d) construction of matrices
(e) Approximate solution in the interval $[0,3]$.
END

