BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 Department of Mathematics, First Semester, 2022-23
 Comprehensive exam (Open Book)
 Numerical Solutions to Ordinary Differential Equations (MATH F444)

Max. Time : 180 mins

Name :
ID No. :

1. Consider the following Runge-Kutta method with Butcher tableau

$1 / 3$	$5 / 12$	$-1 / 12$
α	β	$1 / 4$
	γ	$1 / 4$

(i) Find the values α, β and γ such that this numerical scheme has highest possible accuracy.
(ii) Discuss the stability of numerical scheme for these obtained values of α, β and γ.
2. Given that the characteristic polynomial $\rho(\xi)=\xi^{2}-1$, find the corresponding explicit LMM. Also discuss the 0 -stability of this numerical scheme.
3. Recall the system of ODE for Timoshenko's beam from the mid-semester exam, which had the form of

$$
\frac{d^{2} u(x)}{d x^{2}}-\frac{d \gamma(x)}{d x}=0, \frac{d^{2} \gamma(x)}{d x^{2}}-\alpha \frac{d u(x)}{d x}=0 \text { for } x \in[0,1] .
$$

where α is a constant.
(i) Check whether or not

$$
Y(x)=\left(\begin{array}{cccc}
1 & \frac{\sinh (\sqrt{\alpha} x)}{\sqrt{\alpha}} & 0 & \frac{\cosh (\sqrt{\alpha} x)-1}{\alpha} \\
0 & \cosh (\sqrt{\alpha} x) & 0 & \frac{\sinh (\sqrt{\alpha} x)}{\sqrt{\alpha}} \\
0 & \cosh (\sqrt{\alpha} x)-1 & 1 & \frac{\sinh (\sqrt{\alpha} x)}{\sqrt{\alpha}} \\
0 & \sqrt{\alpha} \sinh (\sqrt{\alpha} x) & 0 & \cosh (\sqrt{\alpha} x)
\end{array}\right)
$$

is the fundamental solution matrix for the given system of ODEs (don't try to derive it, rather use the definition of the fundamental solution matrix).
(ii) For $\alpha=1$, discuss the uniqueness and existence for BVP with the following boundary conditions:
(a) $u(0)=1, u^{\prime}(0)=0, \gamma(1)=0$, and $\gamma^{\prime}(1)=0$.
(b) $u^{\prime}(0)=1, \gamma(0)+u^{\prime}(0)=0, \gamma(1)=0$, and $\gamma^{\prime}(1)=0$.
4. Find the index of the following system of DAEs (motion of a pendulum of a fixed length l)

$$
\begin{aligned}
x^{\prime}(t) & =u(t), \\
y^{\prime}(t) & =v(t), \\
u^{\prime}(t) & =-\frac{2 \lambda(t)}{m} \frac{x(t)}{\sqrt{x(t)^{2}+y(t)^{2}}}, \\
v^{\prime}(t) & =g-\frac{2 \lambda(t)}{m} \frac{y(t)}{\sqrt{x(t)^{2}+y(t)^{2}}}, \\
\sqrt{x(t)^{2}+y(t)^{2}} & =l .
\end{aligned}
$$

The unknowns are the coordinates $x(t), y(t)$, their velocities $u(t)$ and $v(t)$, and the force exerted by the rod is $\lambda(t)$, while m (mass) and g (gravity) are known constants.
5. Consider the two-point boundary value problem

$$
\left((1+x) u^{\prime}\right)^{\prime}=0, \quad 0<x<1 ; \quad u(0)=0, \quad u^{\prime}(1)=1 .
$$

(i) Write the weak form of the given BVP.
(ii) Divide the interval $0<x<1$ into 3 sub-intervals of equal length $h=1 / 3$ and construct the stiffness matrix M and the load vector b.
(iii) Find u_{0}, u_{1}, u_{2} and u_{3}.

