Birla Institute of Technology \& Science, Pilani
 First Semester 2023-2024, MATH F444 (Numerical Solutions of ODEs)
 Comprehensive Examination

Time: 180 Min.
Date: December 09, 2023 (Saturday)
Max. Marks: 45

1. Question paper consists of Part-A (Closed Book) for 100 minutes and Part-B (Open Book) for 80 minutes. Attempt questions of Part-A and Part-B in two separate answer sheets.
2. Write Part-A and Part-B on top right corner of the two answer sheets provided.
3. Part-B answer sheet will be given only after submission of Part-A answer sheet. Early submission of Part-A is allowed.
4. Use 3 significant digit arithmetic with rounding whenever it is not specified.

Max Marks: 25
Part-A (Closed Book)

Time: 100 Minutes

1. Convert the given BVP $y^{\prime \prime}+y=0$ into system of ODEs. For $\cos b=1$ with periodic boundary conditions $y(0)=y(b)$ and $y^{\prime}(0)=y^{\prime}(b)$, find whether BVP will have a unique solution or not. [4]
2. (a) Find the condition on h such that the second order finite difference formulation is stable for solving the problem

$$
\begin{equation*}
y^{\prime \prime}+10 y^{\prime}=0 . \tag{3+4}
\end{equation*}
$$

(b) By using a second order finite difference scheme, express in matrix form $(A Y=b)$ a discrete approximation to the BVP

$$
y^{\prime \prime}+2 y^{\prime}-3 y=1+x
$$

with boundary conditions $y(0)-y^{\prime}(0)=1$ and $y^{\prime}(1)=2$ with $h=1 / 3$.
3. Consider the boundary value problem

$$
-\left(\left(1+x^{2}\right) u^{\prime}\right)^{\prime}=x, \quad 0<x<2 ; \quad u(0)=0, u^{\prime}(2)=2 .
$$

Divide the interval $0<x<2$ into 3 subintervals of equal length $h=2 / 3$ and hence, compute the stiffness matrix A and the load vector b by using finite element method.
4. Use the shooting method to solve the boundary value problem

$$
y^{\prime \prime}=2 y y^{\prime}, \quad 0<x<2
$$

with $y(0)=0.5, y(2)=1$. To solve the IVP, use 2nd order Runge-Kutta scheme with $h=0.50, y^{\prime}(0)=$ 1. Use one iteration of Newton-Raphson's method to find the updated slope to solve the IVP.

5 . For the fixed l and m, find the index of the following DAEs

$$
x^{\prime}(t)=u(t), \quad y^{\prime}(t)=v(t), \quad u^{\prime}(t)=-\frac{2 \lambda(t) x(t)}{m l}, \quad v^{\prime}(t)=1-\frac{2 \lambda(t) y(t)}{m l}, \quad x^{2}+y^{2}=l^{2} .
$$

1. Consider the numerical scheme given as $y_{n+1}=y_{n}+h f\left(\frac{t_{n}+t_{n+1}}{10}, \frac{\theta\left(y_{n}+y_{n+1}\right)}{2}\right)$.
(a) Considering the test equation $y^{\prime}=\lambda y$, what values of θ provide the second order accuracy of the scheme.
(b) If $f(t, x)$ satisfies a Lipschitz condition in x with Lipschitz constant L, then find the Lipschitz constant for $f\left(t_{n}+2 h, x_{n}+\frac{h}{3} f\left(t_{n}, x_{n}\right)\right)$ in the second argument.
2. An approximate solution to the problem $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{n}\right)=y_{n}$ at $x=x_{n}+h$ is given by the Runge-Kutta formula as

$$
\begin{equation*}
y\left(x_{n}+h\right)=y_{n}+1 / 6\left(k_{1}+4 k_{2}+k_{3}\right) \tag{3}
\end{equation*}
$$

where $k_{1}=h f\left(x_{n}, y_{n}\right), k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right), k_{3}=h f\left(x_{n}+h, y_{n}+R\right)$ and $R=h f\left(x_{n}+h, y_{n}+k_{1}\right)$. Find the order of local error with proper justification.
3. For the solution of problem $y^{\prime}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$, the following method is used

$$
\begin{equation*}
y_{j}=y_{j-1}+\alpha h y_{j}^{\prime}+h^{2}\left(\frac{1}{2}-\alpha\right) y_{j}^{\prime \prime}+h(1-\alpha) y_{j-1}^{\prime} . \tag{3}
\end{equation*}
$$

Find the value of α so that the local truncation error of the method is atleast of 3rd order.
4. Use appropriate Adams-Bashforth formula, derived using the points $\left(x_{n}, y_{n}\right),\left(x_{n-1}, y_{n-1}\right)$ and $\left(x_{n-2}, y_{n-2}\right)$, to find $y(6)$ for

$$
\begin{equation*}
y^{\prime}=-4 t y^{2}, \quad y(0)=1 \tag{5}
\end{equation*}
$$

with $h=2$. Use implicit Euler's method to find any past value required and if needed one iteration of Newton-Raphson's method can be used with any initial value.
5. Given the characteristic polynomial $\rho(\eta)=\eta^{2}-\eta-1$, find the corresponding explicit linear multi-step scheme where k th order is given by

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n-j}=h \sum_{j=0}^{k} \beta_{j} f_{n-j}, \quad \beta_{0} \in \mathbb{R}, \quad \beta_{1}=2, \beta_{2}=-1, \quad \beta_{j=3, \ldots, k}=0 \tag{5}
\end{equation*}
$$

Hence, determine the stability polynomial of the multi-step scheme obtained and check whether this polynomial is a Schur-polynomial or not.?

