BITS, PILANI - K K BIRLA GOA CAMPUS

FIRST SEMESTER 2019-2020
Comprehensive Exam (Closed Book)
Course Name : Nonlinear Optimization
Date : 08/12/2019
Course No. : MATH F471
Time : 3 Hours
Day
: Sunday
Max. Marks : 95

Instructions:

1. All questions are compulsory.
2. Write all the steps clearly and give explanation for complete credit.
3. Start a new question on a fresh page.
4. Convert the following separable programming problem to a linear programming problem [10]

$$
\begin{array}{ll}
\text { Min. } f\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+x_{2}^{2}+x_{1}+x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2} \leq 16, \\
& 2 x_{1}+3 x_{2} \leq 6, \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Consider four equally spaced grid points for x_{1} and five equally spaced grid points for x_{2}.
2. Consider the problem

$$
\begin{gathered}
\text { Min. } f\left(x_{1}, x_{2}\right)=\frac{x_{1}+3 x_{2}+3}{2 x_{1}+x_{2}+6} \\
\text { subject to } 2 x_{1}+x_{2} \leq 12, \\
-x_{1}+2 x_{2} \leq 4, \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(a) Show that the KKT conditions are sufficient for the problem.
(b) Show that any point on the line segment joining $(0,0)$ and $(6,0)$ is an optimal solution.
3. (a) Let $f(X)$ be a quadratic function with an $n \times n$ symmetric positive definite hessian matrix (H). Prove that if we successively take optimal steps along the H-conjugate directions $d_{1}, d_{1}, \cdots, d_{n}$, we will reach the optimal point in exactly n iterations.
(b) Find the Min. $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{1} x_{2}+3 x_{2}^{2}$, starting with $X_{1}=(1,2)$ using the conjugate gradient method.
4. Min. $f(x)=4 x^{3}+x^{2}-7 x+14$ in the interval $[0,1]$ within the interval of uncertainty $0.25 L_{0}$, where L_{0} is the initial interval of uncertainty, using Fibonacci search method.
5. Prove or disprove the following statements:
(i) Let S be a non empty convex set in \mathbb{R}^{n}, and let S_{α} be the level set of $f: S \rightarrow \mathbb{R}^{n}$. Then f is a convex function if and only if S_{α} is a convex set.
(ii) Let $d_{1}, d_{2}, \cdots, d_{n}$ be H-conjugate vectors, where H is an $n \times n$ symmetric positive definite matrix, then $d_{1}, d_{2}, \cdots, d_{n}$ are linearly independent vectors.
(iii) For the NLPP Min. $f(X)=x_{1}^{2}+x_{2}$, subject to $x_{1}^{2}+x_{2}^{2} \leq 9, \quad x_{1}+x_{2} \leq 1$, the point $(0,-2)$ is a KKT-point.
(iv) Let $f_{1}, f_{2}, \cdots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex functions, then $f(X)=\max .\left\{f_{1}(X), f_{2}(X), \cdots, f_{k}(X)\right\}$ is a convex function.
6. Min. $f\left(x_{1}, x_{2}\right)=x_{1}-2 x_{2}$, subject to, $-x_{1}+x_{2}^{2} \leq 1, x_{2} \geq 0$, using the interior penalty function method by considering the log-barrier function and by taking the following values of penalty parameter $\mu=1,0.5,0.1$, and 0.01 . Hence write the optimal solution.
7. State/Define the following:
(a) The Caratheodory's Theorem.
(b) Supporting hyperplane for a set.
(c) Quasiconvex functions.
(d) Fitz John point for a NLPP.

