FIRST SEMESTER 2023-2024
ME F211/ MF F211 MECHANICS OF SOLIDS
Mid-Semester Examination (Regular) (Closed Book)
Date: Oct12, 2023
Duration: 90 Minutes
Max Marks:60
Note:

1. There are total 4 questions
2. Start every question from a fresh page.

Q1 Two blocks A and B, each having the same mass of $\mathbf{6 k g}$, are connected by a linkgae as shown in Fig.Q1. The structure is at rest. The coefficients of static friction at the contact surfaces are $\mu_{A}=0.2$ and $\mu_{B}=0.8$ respectivcly. The weight of the links are negligible and the pins of the links are frictionless. Assume $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
[10M]
a. Draw the free body diagram of block A and block B.
b. Determine the magnitude of the largest vertical force \mathbf{P} that may be applied to pin \mathbf{C} so that block \mathbf{A} does not slide and block \mathbf{B} is just about to impend to slide. Also find the forces in link $A C$ and $B C$ respectively.

Fig.Q1

Fig.Q2

Q2 The rigid bars ABC and CD are supported by pin joint at A and \mathbf{D} and by a steel rod at \mathbf{B} as shown in Fig.Q2. There is a roller support between the bars at \mathbf{C}.
a. Draw the free body diagram of rigid bars ABC and CD.
b. Calculate the support reactions at A, C and D respectively.
c. Calculate the tension in the steel rod.
d. Calculate the vertical displacement of point \mathbf{C}.

Q3) The compound beam $\mathbf{A B C D E}$ shown in FigQ3 consists of two beams $\mathbf{A B}$ and $\mathbf{B C D E}$ joined by a hinged connection at B. The hinge can transmit a shear force but not a bending moment. A force of $\mathbf{1 6 0} \mathbf{~ k N}$ acts downward at D and a uniform load of intensity $\mathbf{8 0} \mathbf{~ k N / m}$ acts downward on beam AB.
Note: at A and C there are roller supports, whereas at E it is a hinged support
(i) Calculate support reactions ($\mathbf{R}_{A}, \mathbf{R}_{\mathbf{B}}, \mathbf{R}_{\mathrm{C}}$ and $\left.\mathbf{R E}_{\mathrm{E}}\right)$.
(ii) Using Singularity Function method, determine Shear Force and Bending Moment values at points $\mathbf{A}, \mathbf{B} \mathbf{C}, \mathbf{D}, \boldsymbol{\&} \mathbf{E}$ respectively. Write the answers in the table format and add the discontinuities (if any) at any certain point in the table.
Give values in tabular form

Point	A	B	C	D	E
V $(\mathrm{k} \mathrm{N})$					
$\mathrm{M}(\mathrm{kN}-\mathrm{m})$					

(iii) Draw Shear Force and Bending Moment Diagram of beam ABCDE indicating values at salient points.
(iv) Determine magnitude and location of maximum bending moment.

Fig.Q3

Fig.Q4

Q4) A point on a thin plate is subjected to the stresses as shown in FigQ4.The stresses on a certain plane ' \boldsymbol{p} ' are $\mathbf{9 0 M P a}$ tensile and 40 MPa shear whereas on another plane ' q ' are $\mathbf{6 0 M P a}$ tensile and $\mathbf{3 0 M P a}$ shear respectively.
[15M]
a) Draw the Mohr's circle for the given state of stress at a point.
b) Determine the principal planes and the principal stresses with the help of Mohr's circle.
c) Determine the angle ' θ ' between the plane ' p 'and plane ' q '.

