Birla Institute of Technology and Science, Pilani
 ME F218, Advanced Mechanics of Solids
 Mid-semester Test Sem-II 2022-23 Weightage 30\%
 Open Book (Only Text book, Class note allowed)

Work out all parts of a question in continuous sequence at one place
Q1) The stress at a point in a material is given as following:
$\sigma_{x}=150 \mathrm{MPa}, \sigma_{y}=-100 \mathrm{MPa}, \sigma_{z}=200 \mathrm{MPa}$
$\tau_{x y}=\tau_{y x}=75 \mathrm{MPa}, \tau_{y z}=\tau_{z y}=30 \mathrm{MPa}, \tau_{x z}=\tau_{z x}=-50 \mathrm{MPa}$
For a plane passing through the point whose normal is coincident with the x-axis, find the magnitude of
a) Normal stress
b) Shear stress
c) Resultant stress

Q2) Using energy method, determine the y component of deflection of the point B shown for the slender semi-circular cantilever beam shown in Figure Q2. The beam is of square cross section with area $100 \mathrm{~mm}^{2}$ and radius of curvature $R=100 \mathrm{~mm}$. The material of the beam is Steel with $\mathrm{E}=200 \mathrm{GPa}$ and Poisson Ratio $v=0.3$

Q3) A structural Z section is welded to a horizontal reinforcement plate as shown in Figure Q3.
a) Locate the centroid " C " of the cross section in terms of \bar{y}
b) Determine $\mathrm{I}_{\mathrm{xx}}, \mathrm{I}_{\mathrm{y}}, \mathrm{I}_{\mathrm{xy}}$ about C for the composite section
c) Locate orientation of the principal axis of the composite section with respect to the y axis
[6+7+7=20]

