Department of Mechanical Engineering Birla Institute of Technology and Science Pilani, Pilani Campus

Mid-Semester Examination

(First Semester 2023- 2024)

Course: Advanced Manufacturing Processes (ME F315)

Total Marks: 50 Time: 90 minutes

Note: Attempt all the questions.

[Part 1: Short Answer]

- 1. Discuss the consequences of Abrasive Jet Machining of a mild steel sample. How can it be achieved? (3+2)
- 2. What is the role of dielectric fluid in spark generation in an EDM Process? What will happen if dielectric fluid gets replaced by an electrolyte? (3+2)
- 3. Discuss with suitable schematic diagrams the principle involved in the transferred and non-transferred plasma arc machining. Which is suitable for non-conductive materials and why? (1.5+1.5+2)
- 4. Discuss the consequences of machining a hole in a 5 μm tungsten thin foil using the e-beams accelerated at 100 kV and 50 kV. The density of tungsten is 19300 kg/m³. Justify your answer. (3+2)

[Part 2: Long Answer]

5. Derive the below equation for volumetric material removal rate in hammering model proposed by M. C. Shaw for material removal in the USM process. K, K₁, and K₂ are constants, F_{avg} is average force, a is amplitude, d is diameter of abrasive particle, f is frequency, and H_w is hardness of material. (5+5)

$$MRR_V = KK_1K_2 \left[\frac{4Favg \times a}{\pi K_2 H_w(\lambda + 1)} \right]^{\frac{3}{4}} d^{\frac{1}{4}}.f$$

- **6.** Discuss with suitable schematic diagrams about the different forces applied by the abrasive particles on the asperities present on a component surface during the following processes (2.5+2.5+2.5)
 - a) Abrasive flow finishing
 - b) Rotary abrasive flow finishing
 - c) Magnetorheological finishing processes
 - d) Magnetorheological Abrasive Flow Finishing
- 7. A Nickel super-alloy containing elements: Ni, Cr, Fe, and Ti was used to fabricate a component using the ECM process. Using the data provided in the table below and considering the lowest valency of dissolution for each element, calculate material removed (in cm³) in 10 seconds when a current of 1000 A is being passed through the cell. (5+5)

Elements	Ni	Cr	Fe	Ti
% Weight (x)	70	20	5	Balance
Gram Atomic Weight (A)	58.71	51.99	55.85	47.9
Valency of dissolution (Z)	2	2/3/6	2/3	3
Density ρ (g/cm ³)	8.9	7.19	7.86	4.51