Birla Institute of Technology and Science Pilani-KK Birla Goa Campus

FIRST SEMESTER 2022-23
ME F317 Engines, Motors, and Mobility
Mid Semester Examination (Closed Book)
DATE: 05/11/2022
Time: 4:00 PM - 5:30 PM
Maximum Marks: 60

Instructions:

- Write all steps while answering the problems.
- All the parts of a question must be answered together at a single place.
- Recheck will not be considered for the part of answer where pencil will be used.
- All symbols used in the question paper have their standard meaning.
Q.1. Write the 9 points which differentiate the actual cycle from air standard cycle. [09]
Q.2. (i) For the various compression ratios varying from 4 to 10 , draw the figure showing the effect of fuel ratio on the exhaust gas temperature.
[02]
(ii) At a given compression ratio, by making mixture rich in fuel, whether exhaust gas temperature increases or decreases? Justify your answer within 1 or 2 lines.
[02]
(iii) For a given compression ratio, when will you observe the maximum exhaust gas temperature? Why; justify your answer within 1 or 2 lines.
(iv) At a given compression ratio, by making mixture lean in fuel, whether exhaust gas temperature increases or decreases? Justify your answer within 1 or 2 lines.
(v) At a given air fuel ratio, with increase in compression ratio, whether the exhaust gas temperature decreases or increases? Why; justify your answer within 2 lines.
[03]
Q.3. SI engine with compression ratio 6 uses a fuel with calorific value $42 \mathrm{MJ} / \mathrm{kg}$. Air fuel ratio is $15: 1$. Pressure and temperature at the start of compression stroke are 1 bar and $57^{\circ} \mathrm{C}$ respectively. Determine the maximum pressure in the cylinder if the index of compression is 1.3 and $\mathrm{Cv}=0.678+0.00013 \mathrm{~T}$ where T is in Kelvin. Compare this value with that obtained when $\mathrm{Cv}=0.717 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.
Q.4. A four cylinder four stroke SI engine running at 1200 rpm gives 18.87 kW as brake power. When 1 cylinder missed firing the average torque was 100 NM. Calculate the indicated thermal efficiency if the CV of the fuel is $42 \mathrm{MJ} / \mathrm{kg}$. The engine uses 0.335 kg of fuel per kW / h. What is the mechanical efficiency of the engine?
[12]
Q.5. Find out the speed at which a four cylinder engine using natural gas can develop a brake power of 50 kW working under following conditions.
Air-gas ratio $=9: 1$, calorific value of the fuel $=34 \mathrm{MJ} / \mathrm{m}^{3}$, compression ratio $=10: 1$, volumetric efficiency $=70 \%$, indicated thermal efficiency $=35 \%$, mechanical efficiency $=80 \%$, and the total volume of the engine is 2 liters.
[13]

ANSWER KEY

Q.1. Actual cycle considers following points which are NOT considered in air

 standard cycle. [Each point carries 1 mark]1. It considers Fuel air ratio alongwith Compression ratio.
2. It considers effect of Residual gases on Volumetric efficiency.
3. It considers variation of Specific heat with Temperature.
4. It considers effect of Dissociation and Re-association.
5. It considers number of Moles.
6. The progressive combustion rather than the instantaneous combustion.
7. The heat transfer to and from the working medium
8. The substantial exhaust blowdown loss, i.e., loss of work on the expansion stroke due to early opening of the exhaust valve.
9. Gas leakage, fluid friction etc., in actual engines.
Q.2. (i) [2 M]

(ii) Decreases [1 M]. With increase in fuel, for a given amount of stoichiometric air supplied, partial combustion or incomplete combustion increases causing decrease in T4. [1 M]
(iii) At stoichiometric mixture (SM) [1 M]. Re-association will more effectively takes place at SM with complete combustion of fuel causing T4 maximum than other air fuel ratios. [1 M]
(iv) Decreases [1 M]. With decrease in fuel, for a given amount of stoichiometric air supplied, re-association takes place with complete combustion of fuel but due to decrease in amount of fuel combusted causing net effect as decrease in T4. [1 M]
(v) Decreases [1 M]. This is because, with increase in compression ratio, stroke length increases which causes (a) more expansion of the hot gases [1 M] (b) increased surface area of the cylinder to lose more heat to the cooling medium (water or air) [1 M].
Q.3.

Solution \rightarrow

Now For varying C_{V},

$$
\begin{aligned}
Q & =m_{f} c_{f}=m_{\text {max }} \cdot C_{\text {pix }} \cdot d T_{\text {mix }} \\
& =1 \mathrm{~kg} \times 42000 \frac{\mathrm{~kJ}}{\mathrm{~kg}}=(1+15) \mathrm{kg}\left[0.678+0.00013 \times\left(\frac{T_{3}+565}{2}\right)\right]\left(T_{3}-565\right)
\end{aligned}
$$

Solving, $T_{3}=3375 \mathrm{k}$
Hence $\quad P_{3}=P_{2} \frac{T_{3}}{T_{2}}=10.27 \times \frac{3375}{565}$

$$
\begin{gathered}
P_{3}=61.35 \text { bay } \\
\longrightarrow \text { with varying } \\
C_{V}
\end{gathered} \rightarrow \underset{\substack{\text { VII }}}{\rightarrow 2 \mathrm{~m}}
$$

Q.4.
$Q=4$
Brake power developed by 4 gylinders 18.87 kw hence, $\quad 4(I P-F P)=B P=18.87 \rightarrow$ (1)
BP developed when 3 (cylinders fred.

$$
\begin{aligned}
& =\frac{2 \pi N T}{60}=\frac{2 \pi \times 1200 \times 100}{60}=12.57 \mathrm{kw} \\
& =3 I P-4 \mathrm{FP}=12.57 \longrightarrow(2) \\
& =2 \mathrm{~m}
\end{aligned}
$$

Hence, subtracting eqn'(2) from (1),

$$
\begin{aligned}
& \begin{aligned}
& I P=6.3 \mathrm{kWW} \longrightarrow(3) \\
& \text { hence } \begin{array}{r}
I P \text { of engine having } 4 \text { cylinders } \\
\\
=4 \times I P=4 \times 6.3=25.2 \mathrm{~kW}
\end{array} \\
& \longrightarrow(4)
\end{aligned}
\end{aligned}
$$

Therefore, Indicated thermal efficiency $=\frac{\text { If }}{C \times M \times m f}$
when 4 cylinders fared

$$
\text { When } 4 \text { cylinders fared } 25.2 \times 10^{3} \text { cu } \mathrm{w} \text { mf }
$$

$$
=\frac{25.2 \times 10^{3} \mathrm{w}}{42 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \times 0.335 \frac{\mathrm{~kg}}{\mathrm{kw}-\mathrm{hr}}}
$$

$$
=\frac{25.2 \mathrm{w}}{42 \times 66380.335 \frac{\mathrm{~kg}}{\mathrm{kwv}-\mathrm{hr}} \times 18.87 \mathrm{kw}}
$$

$$
=\frac{0.0949 \mathrm{w}}{1 \frac{\mathrm{~kJ}}{\mathrm{hr}}}
$$

$$
=\frac{0.0341 \times 3600 \mathrm{w}}{1000 \frac{\mathrm{~J}}{\mathrm{sec}}}
$$

Hence

$$
\begin{aligned}
= & 0.34164 \\
& =54.16 \%
\end{aligned}
$$

Q. 5.

Indicated thermal efficiency $=$ ITE $=$ IP $/$ Energy
Where IP i.e Indicated Power provided to the piston / Input fuel energy in kW or Kj
ITE $=\mathrm{IP}$ in $\mathrm{KW} /($ mass of fuel $/ \mathrm{sec}$ in kg / s) $*$ (Calorific value of fuel in $\mathrm{kJ} / \mathrm{kg}$)
ITE $=[\mathrm{BP} /$ Mechanical Efficiency $] /$ Mf Cf.
Now, Mf Cf for engine $=[\mathrm{BP} / \mathrm{ME}] / \mathrm{ITE}$.
Mf Cf for 1 cylinder $=[50 \mathrm{~kW} / 0.8] / 0.35 *(\mathbf{K}=\mathbf{4})=44.64 \mathrm{~kW} /$ cylinder
$\mathrm{Mf}(\mathrm{kg} / \mathrm{sec}) \quad \mathrm{Cf}(\mathrm{kJ} / \mathrm{kg})=44.64 \mathrm{~kJ} / \mathrm{sec}$
$\mathrm{Mf}(\mathrm{kg} / \mathrm{sec}) * \mathrm{Cf}(\mathrm{kJ} / \mathrm{kg})=44.64 \mathrm{~kJ} / \mathrm{sec}$
$\mathrm{Mf}(\mathrm{kg} / \mathrm{sec}) * \mathrm{Cf}(\mathrm{kJ} / \mathrm{kg})=44.64 \mathrm{~kJ} / \mathrm{sec} . \ldots$ (time basis) (eq.1)[2 M]
$\operatorname{Mf}(\mathrm{kg}) * \mathrm{Cf}(\mathrm{kJ} / \mathrm{kg})=44.64 \mathrm{~kJ}$ for Many number of cycles
(Mf.Cf) $\mathrm{kJ}=44.64 \mathrm{~kJ}$
$1.19 \mathrm{~kJ}=44.64 \mathrm{~kJ}$ is NOT possible i.e hence there must be (refer below how to get 1.19 kJ for Mf. Cf)
[1.19/cycle] $*$ no. of cycles $=44.64$ (refer below how to get $1.19 /$ cycle $)$
Hence no. cycles or no. of power strokes $=p s$
$\mathrm{ps}=44.64 \mathrm{~kJ} /[\mathrm{Mf} . \mathrm{Cf}] \mathrm{kJ} \ldots$ for diesel or petrol where Mf in kg and Cf in $\mathrm{kJ} / \mathrm{kg}$
$\mathrm{ps}=44.64 \mathrm{~kJ} /[\mathrm{Vf} . \mathrm{Cf}] \mathrm{kJ}$ for gas fuels where Vf in m^{3} and Cf in $\mathrm{m}^{3} / \mathrm{kg} \ldots$. (eq.2)
Hence, $\mathrm{ps}=44.64 / 1.19=37.51$ (refer below how to get $1.19 /$ cycle)
Thus number of power strokes $(\mathrm{ps})=37.51$ obtained using eq. 1 and 2 where basic eq. 1 is having the basis of time in second.
Hence number of power strokes per second (in a cylinder) $=37.51$ \qquad [2 M]
Hence power strokes per minutes $=\mathrm{n}=37.51 * 60=(\mathrm{N} / 2)$
Hence number of revolutions per minutes $=\mathrm{N}=2 * 37.51 * 60 \mathrm{RPM}$
Hence $\mathbf{N}=\mathbf{4 5 0 0}$ rpm (Approximately) \qquad [3 M]
[Now vf $\left(\mathrm{m}^{3}\right)=\mathrm{va} /(\mathrm{a} / \mathrm{f})=\mathrm{va} / 9=(\mathrm{vs*}$ vol eff) $/ 9 \ldots$...(eq.3)
Where vs $=\mathrm{vt}-\mathrm{vcl}$
$\mathrm{vs}=(2000 c c / 4)-(v t / \mathrm{CR})=(500)-(500 / 10)=450 \mathrm{cc}=450 * 10^{-6} \mathrm{~m}^{3}=\mathrm{vs}$ \qquad
From eq $3, \mathbf{v f}\left(\mathrm{~m}^{3}\right)=\mathrm{va} /(\mathrm{a} / \mathrm{f})=\mathrm{va} / 9=(\mathrm{vs} *$ vol eff $) / 9$
vf $\left(\mathrm{m}^{3}\right)=\left(450 * 10^{-6} * 0.7\right) / 9$
vf $\left(\mathrm{m}^{3}\right)=35^{*} 10^{-6} \ldots \ldots \ldots \ldots \ldots$ (eq.4) \ldots [2 M]
Now vf $\left(\mathrm{m}^{3}\right) . C f\left(\mathrm{~kJ} / \mathrm{m}^{3}\right)=35^{*} 10^{-6} \mathrm{~m}^{3} .34 * 10^{3}\left(\mathrm{~kJ} / \mathrm{m}^{3}\right)$ $=1.19 \mathrm{~kJ} /$ cycle \qquad (eq.5) [2 M]

