Birla Institute of Technology \& Science, Pilani

Second Semester 2022-2023

Mid-Semester Examination

Course	$:$ ME F318 Computer-aided design	
Nature of Exam	$:$ Closed Book	
Weightage	$: 25 \%$ (As per Course Handout) - 50 marks	No. of Pages $=1$
Duration	$: 1.30$ Hours	
Date of Exam	$: 14 / 03 / 202209: 00$ AM to 10:30 AM	

Note to Students:

1. All parts of a question should be answered consecutively.
2. Each answer should start from a fresh page.
3. Assumptions made if any, should be stated clearly at the beginning of your answer.
4. Do NOT write in your answer sheet after the exam duration.
Q.1. An engineer traces a point on the rim of a bicycle wheel as it rolls over a flat surface without slipping. Derive parametric equation of the curve traced by the engineer using the concept of recursive relation. Assume the origin to be located at a point where all the spokes intersect.
[15 marks]
Q.2. The rim of the bicycle wheel is represented by a circle (of center P_{c}) that passes through three points, $\mathrm{P}_{0}[2,2], \mathrm{P}_{1}[3,4]$ and $\mathrm{P}_{2}[4,3]$. Write the parametric equation of line joining P_{0} and P_{c}.
[5 marks]
Q.3. Three Hermite cubic spline curves are to be used to design the path of a roller coaster ride. Seg-1 with $\mathrm{P}_{0}[3,3] \& \mathrm{P}_{1}[5,4] \mid$ Seg-2 with $\mathrm{P}_{1}[5,4] \& \mathrm{P}_{2}[7,6] \mid$ Seg-3 with $\mathrm{P}_{2}[7,6] \& \mathrm{P}_{3}[9,7]$. Tangent vectors (TVs) at P_{0} and P_{3} are [3,0] and [3,0], respectively. Evaluate intermediate TVs in terms of data points and associated TVs. Ensure C2 continuity.
[10 marks]
Q.4. Find out at what values of u, the influence of (a) $P_{0} \& P_{1}$ AND (b) $P_{2} \& P_{3}$ is same on the Bezier curve in the range 0 to 1 , defined by these control points.
[10 marks]
Q.5. Smooth path planning for a mobile robot is based on quadratic Bezier curve defined by three points, $\mathrm{P}_{0}[2,2], \mathrm{P}_{1}[3,4]$ and $\mathrm{P}_{2}[4,3]$.
[10 marks]
a) Write parametric equation of the curve.
b) Draw a neat sketch of the curve.
c) Does this path exactly trace a circular arc? Derive and show the proof for your answer.
