Birla Institute of Technology & Science, Pilani First Semester 2022-2023 Comprehensive Examination

Course No. Course Title Nature of Exam	: ME F342/ MF F342 : COMPUTER AIDED DESIGN : Open Book	Name: Id:
Weightage	: 35%	No. of Pages $= 1$ No. of Questions $= 5$
Duration	: 3 Hours	
Date of Exam	: 22/12/2022	

Note: .

1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.

2. Assumptions made if any, should be stated clearly at the beginning of your answer.

- **Q.1.** The corners of a wedge shaped block are A(0, 0, 2), B(0, 0, 3), C(0, 2, 3), D(0, 2, 2), E(-1, 2, 2) and F(-1, 2, 3) and the reflection plane passes through the *y*-axis at 45⁰ between negative *x* axis and positive *z* axis. Determine the reflection of the wedge.
- **Q.2.** Show that the reflection of a 2D object about an arbitrary line ax + by + c = 0 is given by:

$$\frac{1}{a^2 + b^2} \begin{bmatrix} b^2 - a^2 & -2ab & -2ac \\ -2ab & a^2 - b^2 & -2bc \\ 0 & 0 & a^2 + b^2 \end{bmatrix}$$

Q.3. (a) Find the equation of cubic spline segment with end position vectors \mathbf{P}_0 (0, 0), \mathbf{P}_1 (3, 4) and the tangent vectors $\mathbf{P}'_0 = \begin{bmatrix} -1 & -1 \end{bmatrix}$ and $\mathbf{P}'_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ for the parameter t ($0 \le t \le 1$) using normalized approximation.

(b) The defining polygon points are given by $B_1[0,0]$, $B_2[1,3]$, $B_3[2,1]$ and $B_4[3,2]$. Find the starting and end points of fourth order periodic B-spline curve if double coincident vertices are used at both ends.

$$[4 + 4 = 8]$$

[7]

[6]

- Q.4. Sweep the planar square defined by vertices $P_1[0 -1 0]$, $P_2[0 -1 -1]$, $P_3[0 1 -1]$, $P_4[0 1 1]$ along the path x = 10s, $y = \cos(\pi s) 1$ while maintaining the normal to the polygon in the instantaneous direction of the tangent to the path. [7]
- **Q.5.** Verify the Euler equation for the two solids shown below:

[7]