Birla Institute of Technology and Science Pilani-K K Birla Goa Campus

SECOND SEMESTER 2022-2023
ME F420 Power Plant Engineering
Mid Semester Examination (Closed Book)
Time: 4:00 PM - 5:30 PM
Maximum Marks: 60
DATE: 13/03/2023

Instructions:

- Write all steps while answering the problems.
- All the parts of a question must be answered together at a single place.
- All symbols used in the question paper have their standard meaning.
Q.1. A 30 MW plant capacity has peak demand of 25 MW . It supplies individual loads having maximum demands of $10 \mathrm{MW}, 8.5 \mathrm{MW}, 5 \mathrm{MW}$ and 4.5 MW . The load factor is 0.45 . Estimate the average load, energy supplied during the year, diversity factor and demand factor.
[10 M]
Q.2. A power station supplies the following loads to the consumers:

Time (hrs)	$0-6$	$6-10$	$10-12$	$12-16$	$16-20$	$20-22$	$22-24$
Load (MW)	30	70	90	60	100	80	60

(a) Draw the load curve and estimate the load factor of the plant. (b) What is the load factor of a standby equipment of 30 MW capacity if it takes up all loads above 70 MW? What is its use factor? Assume peak load = plant capacity for the plant and also for standby equipment.
[10 M]
Q.3. The incremental fuel costs for two generating units A and B of a power plant are given by the following

$$
\frac{d F_{A}}{d P_{A}}=0.06 P_{A}+11.4 \quad \frac{d F_{B}}{d P_{B}}=0.07 P_{B}+10
$$

where P is in mega-watts and F is in rupees per hour. Find the economic loading of the two units when the total load to be supplied by the power station is 150 MW . Find the loss in fuel cost per hour if load is equally shared by the two units.
[10 M]
Q.4. Feedwater from high pressure heater enters the inlet header of the economizer at 600 kg / s and $140 \mathrm{bar}, 170^{\circ} \mathrm{C}$. Flue gases flow over the economizer coils at the rate of 1250 kg / s and leave at $450^{\circ} \mathrm{C}$. Flue gas has speed $12 \mathrm{~m} / \mathrm{s}$ and water leaves the coils at $1.2 \mathrm{~m} / \mathrm{s}$. The tubes are 70 mm od and 60 mm id. Overall heat transfer coefficient is $70 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the number of coils and length of one coil. Take C_{p} of flue gases as 1.12 $\mathrm{kJ} / \mathrm{kgK}$. If the vertical pitch of the coil and distance between the two coils is same as 80 mm , and the clearance on the two sides of the duct of width 4.8 m is 5 mm , find the vertical height of the economizer coil and length of the duct.
[30 M]

ANSWER KEY

Q.1. Energy carries 3 marks, Load factor 3 Marks, Diversity factor 2 Marks, Demand factor 2 Marks.

Load factor $=\frac{\text { Average Load }}{\text { Peak Load }}$
$0.45=\frac{\text { Average Load }}{\text { Peak Load }(=25)}$
Average load $=11.25 \mathrm{MW}$
Energy supplied per year
$=$ avearge load $\times 8760 \mathrm{hrs}$
$=11.25 \times 8760 \mathrm{MWh}$
$=98550 \mathrm{MWh}$ per year

Diversity factor

$$
\begin{aligned}
& =\frac{\text { Sum of individualy connected maximum demand }}{\text { Peak load }} \\
& =\frac{10+8.5+5+4.5}{25}=1.12
\end{aligned}
$$

Demand factor $=\frac{\text { Maximum demand }}{\text { Total connected load }}$
$=\frac{25}{10+8.5+5+4.5}=0.89$
Q.2. (a) Load curve 1 Mark, Energy 2 Marks, Average Load 1 Mark and Load factor 1 Mark
(b) Energy 2 Marks, Average load, load factor and use factor carries 1 mark each

(a) Total Load-Hour or Energy generated $=$ area under the load curve

$$
\begin{aligned}
& =30 \times 6+70 \times 4+90 \times 2+60 \times 4+100 \times 4 \\
& +80 \times 2+60 \times 2 \\
& =180+280+180+240+400+160+120 \\
& =1560 \mathrm{MWh} \text { per day }
\end{aligned}
$$

Average load $=\frac{1560 \mathrm{MWh}}{24 \mathrm{~h}}=65 \mathrm{MW}$
Load factor $=\frac{\text { Average Load }}{\text { Peak load }}=\frac{65}{100}=0.65$
Capacity factor and Load Factor will be same
because in this problem Peak Load = Plant Capacity
(b) If the load above 70 MW is supplied by a stand by unit of 30 MW capacity, the energy generated by it

$$
\begin{aligned}
& =20 \times 2+\underline{30} \times 4+10 \times 2+\underline{0} \times 16 \\
& =40+120+20+0=180 \mathrm{MWh}
\end{aligned}
$$

Average Load $=$ Total MWh $/($ Total hrs $=$ Operating hrs + Non-operating hours)
Average load $=180 /(2+4+2+16)=180 /(24)=\underline{7.5} \mathrm{MW}$
Load factor $=7.5 / 30=0.25=$ CAPACITY FACTOR
Use Factor $=180 \mathrm{MWh} /(30 \times 8)=0.75$
Q.3. Getting Correct value of PA and PB for economic loading carries 2.5 Makrs each. For equal sharing load, CA and CB carries 2 Marks each and their difference carries 1 Mark.

- $\mathrm{PA}+\mathrm{PB}=150 \mathrm{MW}$. (i)

For economic loading $\quad \frac{d F_{A}}{d P_{A}}=\frac{d F_{B}}{d P_{B}}$
Hence, 0.06PA+11.14 = 0.07 PB+10......(ii)
Solving (i) and (ii), PA $=70 \mathrm{MW}, \mathrm{PB}=80 \mathrm{MW}$

- If load will be shared equally means $P A=P B=75 \mathrm{MW}$,

Then increase in cost for unit $A=C A$
75
$\int_{70}\left(0.06 P_{A}+11.4\right) d P_{A}=$ Rs. 78.75 per hour
Increase in cost for unit B will be
$\int_{80}^{75}\left(0.07 P_{B}+10\right) d P_{B}=-$ Rs. 77.12 per hour
This shows that in case of unit B there is decrease in cost.
Hence NET increase in cost due to departure from economic distribution
_ $=78.75-77.12=$ Rs. 1.63 per hour.
Q.4. Detailed calculations on the interpolation carries 9 marks for 100 bar, 150 bar and 140 bar pressure. Correct value of Tg 1 , Area Mo, number of coils, length of each coil, number of turns in each coil, vertical height of the coil, and length of the duct carries 3 marks each.

Sol \rightarrow At 140 bar for saturated liquid water

$$
\left.\begin{array}{l}
h_{f}=1571.08 \mathrm{~kJ} / \mathrm{kg} \\
\nu_{f}=0.001611 \mathrm{~m}^{3} / \mathrm{kg} \\
T_{\text {sat. }}=3.36 .75^{\circ} \mathrm{C}
\end{array}\right\} \text { table } B .1 .2
$$

At 140 bars, $170^{\circ} \mathrm{C}$ Water, Compressed State Using table $B .1 .4$

$\therefore 100 \mathrm{bas}, 170^{\circ} \mathrm{C}, h=724.45 \mathrm{~kJ} / \mathrm{kg}$
150 bar, $160^{\circ} \mathrm{C}, h=684.07 \mathrm{~kJ} / \mathrm{kg}$

$$
180^{\circ} \mathrm{C}, h=770.48 \mathrm{~kJ} / \mathrm{kg}
$$

$150 \mathrm{bas}, 170^{\circ} \mathrm{C}, h=727.275 \mathrm{~kJ} / \mathrm{kg}$
$\therefore 140 \mathrm{bae}, 170^{\circ} \mathrm{C}, h=726.71 \mathrm{~kJ} / \mathrm{kg}=h_{170^{\circ} \mathrm{C}}$
Rate of heat transfer in the economiser.

$$
\begin{equation*}
Q=\omega_{s}\left(h_{f}-h_{170^{\circ} \mathrm{C}}\right)=\omega_{g} C_{\text {pax }}\left(T_{g_{1}}-T_{g_{2}}\right) \tag{I}
\end{equation*}
$$

Also, $Q=U_{0} A_{0} \Delta T_{\text {lm }}$
Using (I), $\operatorname{Tg}_{1}=787.75^{\circ} \mathrm{C}$

$$
\text { Using II, } A_{0}=\frac{Q}{U_{0} \Delta T_{\text {lm }}}=\frac{\omega_{S}\left(h_{f}-h_{\left.170^{\circ} \mathrm{C}\right)}\right.}{U_{0} \times(785.75-336.75)}
$$

Using II, $A_{0}=\frac{600(1571.08-726.71)}{70 \times \frac{451-280}{\ln \left(\frac{451}{280}\right)}}$

$$
\therefore A_{0}=20.1751 \times 10^{3} \mathrm{~m}^{2}
$$

For Number of coils, $\omega_{s}=n\left(\frac{n d i}{4}\right)\left(v_{\omega_{\text {exit }}}\right)\left(\rho_{\text {exit }}\right)$

$$
\therefore n=285 \text { coils }
$$

$$
\begin{aligned}
& A_{0}=n \pi d_{0} l=20.175 \times 10^{3} \mathrm{~m}^{2} \\
& l=\frac{20.175 \times 10^{3}}{285 \times \pi \times 0.070} \\
& l=321.9 \mathrm{~m}
\end{aligned}
$$

Number of turns in one coil,

$$
\begin{aligned}
n_{t} & =\frac{l}{\text { width }-2 \times \text { dearance }}-1 \\
& =\frac{321.9}{4.8-2 \times 0.005}-1 \\
& =67.2-1 \\
n_{t} & =67 \text { turns }
\end{aligned}
$$

Vertical Height of economiser Coils, h

$$
\left.\left.h=n_{t} \times \text { (vertical pitch }\right)+2 \times \text { Colter Radius }\right)
$$

$$
\begin{aligned}
& \text { height }=67 \times 0.08+0.07 \\
& \therefore \quad h=5.43 \mathrm{~m}
\end{aligned}
$$

Length of duct $=($ (V-1) \times horizontal pitch)
+2 (outer radius) $+2 \times$ clearance
Length of duct $=22.80 \mathrm{~m}$

