BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI Second Semester (2021-2022) ME F461 Refrigeration and Air-conditioning Comprehensive Semester Examination – Regular - (Closed Book)

Friday, May 20, 2022 (8:00 - 11:00 A.M.)

Max Marks = 60

Maximum Duration: 2.30 Hours

PART B

Instructions					
•	Carry only thermodynamic/refrigeration property tables only.				

1. A rectangular duct 0.15 m by 0.12 m is 20 m long and carries standard air at the rate of 0.3 m³/s. Calculate the total pressure required at the inlet to the duct in order to maintain this flow and the air power. Assume that for the duct, the friction factor (f) = 0.005. [10]

2. 800 m³/min of recirculated air at 22°C DBT and 10°C dew point temperature is to be mixed with 300 m³/min of fresh air at 30°C DBT and 50% RH. Determine the enthalpy, specific volume, humidity ratio and dew point temperature of the mixture. [10]

3. A vapour compression refrigeration plant works between pressure limits of 5.3 bar and 2.1 bar. The vapour is superheated at the end of compression, its temperature being 37° C. The vapour is superheated by 5° C before entering the compressor.

If the specific heat of superheated vapour is 0.63 KJ/kg K. Find the coefficient of performance of the plant. Use the data given below: [5]

Pressure, Bar Saturation temperature, °C		Liquid heat, kJ/kg	Latent heat, kJ/kg
5.3	15.5	56.15	144.9
2.1	-14.0	25.12	158.7

- 4. (a) Discuss in details, the secondary refrigerant.[2](b) What if R-22 or R-290 is used as a drop-in substitute in R-12 refrigerator?[3]
- 5. The following data refer to a $LiBr + H_2O$ absorption system: Generator temperature = $80^{\circ}C$

 $T_{condenser} = T_{absorber} = 30^{\circ}C$ Evaporator temperature = $10^{\circ}C$ Condensate temperature = $25^{\circ}C$ Steam enters the generator heating coil at 120°C (dry-saturated state steam) and leaves it at 100°C as condensate.

Concentration of liquid leaving generator is 0.65 and its enthalpy -75 kJ/kg, concentration of liquid leaving absorber is 0.51 and its enthalpy -170 kJ/kg. Enthalpy of vapour leaving generator is 2620 kJ/kg. Flow rate through evaporator is 0.4 kg/s. Determine the following:

- (i) Pressure in generator, condenser, evaporator and absorber in mm of mercury head;
- (ii) Tonnage
- (iii) Heat rejection to condenser and absorber;
- (iv) Rate of mass leaving absorber;
- (v) C.O.P.

[20]

- **6.** An ice plant using NH₃ as refrigerant works between -15°C and 35°C and produces 10 tons of the ice per day from water supplied at 30°C. The ice temperature is -5°C. Assuming simple saturated cycle and using the following properties of NH₃, determine
- (i) the capacity of the refrigeration system required.
- (ii) the mass flow rate of refrigerant.
- (iii) the diameter and stroke of the compressor cylinder if its speed is limited to 1200 r.p.m. Take L/D = 1.2 and volumetric efficiency of the compressor = 0.65.
- (iii) the power of the motor required to run the compressor if the isentropic efficiency is 85% and mechanical efficiency of 95%.

(iv) the theoretical and actual COP.

Pressure, (bar)	Saturation temperature,	Specific Enthalpy, (kJ/kg)		aturationSpecific Enthalpy,Specific Entropy,nperature,(kJ/kg)(kJ/kg K)		Entropy, g K)	Specific volume
	(°C)	Liquid	Vapour	Liquid	Vapour		
2.36	-15	112.3	1426	0.457	5.549	0.509	
13.5	35	347.5	1471	1.282	4.930	0.096	

[10]