## Birla Institute of Technology and Science, Pilani ME F485 – Numerical Methods in Fluid Flow and Heat Transfer Mid-Semester Examination, Spring 2017-2018 (Closed Book) Duration: 9-10:30AM

| 1. Multiple Choice Questions. (1M for each correct choice, -0.5 M for incorrect choice) |                                                |               | [15M]                                  |                    |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------|---------------|----------------------------------------|--------------------|--|
| a. Select all                                                                           | that apply for TDMA.                           |               |                                        |                    |  |
| i.                                                                                      | Tridiagonal Solver                             | ۷.            | LU decomposition                       |                    |  |
| ii.                                                                                     | Thomas Algorithm                               | vi.           | Gauss Elimination                      |                    |  |
| iii.                                                                                    | Indirect solution method                       | vii.          | Direct Solver                          |                    |  |
| iv.                                                                                     | O(n) operations, where $n$ is the size of      |               |                                        |                    |  |
|                                                                                         | the system                                     |               |                                        |                    |  |
| b. F                                                                                    | or a certain 2D elliptic problem, Jacobi schem | ne leads to r | non-convergence. Wh                    | nat options are at |  |
|                                                                                         | disposal to a numerical scientist to overcome  | convergenc    | ce issues?                             |                    |  |
| i.                                                                                      | Gauss-Seidel iterative scheme                  | iv.           | Higher order finite difference schemes |                    |  |
| ii.                                                                                     | Increase mesh refinement                       | ۷.            | Alternate Direct Implicit              |                    |  |
| iii.                                                                                    | Under-relaxation                               | vi.           | Employ Direct Solve                    | rs                 |  |
| c. S                                                                                    | elect the statements that apply to Multigrid F | ramework      |                                        |                    |  |
| i.                                                                                      | More than one mesh refinements used            | ۷.            | Achieves speed up b                    | oy operating on    |  |
| ii.                                                                                     | Offers good compromise between                 |               | coarser grids where                    | spectral radius is |  |
|                                                                                         | speed and accuracy                             |               | smaller.                               |                    |  |
| iii.                                                                                    | Free of truncation errors                      | vi.           | Offers accuracy of fi                  | nest grid in work  |  |
| iv.                                                                                     | Prolongation is akin to interpolation          |               | units similar to the o                 | coarsest grid.     |  |

- operation
- d. Select statements that pertain to hyperbolic equation,
  - i. Any point in solution space is only affected by its domain of disturbance
- ii. Solution is a hyperbolic function

- iii. Effect of disturbance travels at a finite wave speed along its characteristics directions.
- iv. Unsteady heat conduction equation
- v. Must have discontinuity in the solution
- 2. Classify the following equations into hyperbolic, elliptic, parabolic. [5M]

a. 
$$\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = 0$$

Date:10/3/2018

b. 
$$\frac{\partial \phi}{\partial t} - \Gamma \frac{\partial^2 \phi}{\partial x^2} = 0$$

c. 
$$(1 - M^2)\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

Marks [75]

## Birla Institute of Technology and Science, Pilani ME F485 – Numerical Methods in Fluid Flow and Heat Transfer Mid-Semester Examination, Spring 2017-2018 (Closed Book) 8 Duration: 9-10:30AM

## Date:10/3/2018

Marks [75]

3. Consider the following non-uniform grid. Derive a central finite difference scheme for  $\frac{\partial \phi}{\partial x}\Big|_i$  as an average of forward difference and backward difference in terms of  $\Delta x_-$  and expansion ratio/growth ratio  $g = \frac{\Delta x_+}{\Delta x_-}$ . Show at least 2 terms in truncation error. What is the Leading Error Term(LET)? Is the scheme still second order? Comment on effect of g on truncation error.[15M]



Figure Q3. Non-Uniform Finite Difference Grid

4. Consider integral form of governing equation over the domain  $\Omega$ ,  $\int_{\Omega} \frac{d^2 \phi}{dx^2} d\Omega = \int_{\Omega} S d\Omega$ . Approximate piecewise polynomial solution of the form  $\hat{\phi}(x) = ax^2 + bx + c$  is sought. Device second order forward Finite Difference scheme to express equation for left boundary node  $\phi_0$  (Figure 2) having Neumann boundary condition prescribed,  $\frac{d\phi}{dx} = f$ . [15M]

Figure Q4. 1-Dimensional uniform finite difference grid



- 5. The gradient of pressure can be approximated by
  - (A)  $\frac{\partial p}{\partial x}\Big|_i = \frac{p_{i+1} p_{i-1}}{2\Delta x}$  or  $(B) \frac{\partial p}{\partial x}\Big|_i = \frac{p_{i+1/2} p_{i-1/2}}{\Delta x}$ ,

Which one do you think will be more accurate? Find the difference between the two in the form  $(A) = (B) + a\Delta x^n \frac{\partial^m p}{\partial x^m}\Big|_i.$  Specify *a*, *n*, and *m*. [15M]

$$Taylor Series: p(x + \Delta x) = p(x) + \Delta x \, p'(x) + \frac{\Delta x^2}{2} p''(x) + \frac{\Delta x^3}{6} p'''(x) + \frac{\Delta x^4}{24} p''''(x) + \cdots$$

- 6. What simplification can you make to the following generalized conservation equations for incompressible, inviscid, steady air flow over an airfoil? Justify your assumptions. [10M] Continuity:  $\frac{\partial \rho}{\partial t} = \frac{1}{2} \left( -\frac{1}{2} \right) = 0$ 
  - Continuity:  $\frac{\partial \rho}{\partial t} + \vec{\nabla} . (\rho \vec{V}) = 0$ Momentum Cons.: Energy Cons.:  $\frac{\partial (\rho \vec{V})}{\partial t} + \vec{\nabla} . (\rho \vec{V} \vec{V}) = -\vec{\nabla} p + \vec{\nabla} . \vec{t} + \vec{B}$ Energy Cons.:  $\frac{\partial (\rho e)}{\partial t} + \vec{\nabla} . (\rho e \vec{V}) = -\frac{\partial p}{dt} - \vec{\nabla} . (p \vec{V}) + \vec{B} . \vec{V} + \vec{\nabla} . (\vec{t} . \vec{V}) + \vec{\nabla} . (k \vec{\nabla} T) + \dot{q}$