Birla Institute of Technology \& Science, Pilani First Semester 2022-23 (Comprehensive Examination - Regular)
 ME G511 (Mechanism and Robotics)
 Weightage - 40\% (40M)
 Date: 27/12/2022
 Duration - 3 hrs

(Every symbol and abbreviation has its usual meaning as per the text book)
One Hour
PART A
15 Marks
Q1. What do you mean by normalized time trajectory planning with cubic polynomial. Determine the unknown coefficients in the polynomial.
Q2. Explain the impact of Gearbox on controllability of the One DOF link actuator system.
Q3. How arm is different from Manipulator? Discuss the impact of redundancy on handling objects.
Q4. Discuss differences between equivalent axis -angle representation and Euler parameter method to represent the orientation of an object.
Q5. Discuss the importance of inverse dynamics and forward dynamic approaches for multibody systems. How is it different from the torque relation obtained from static equilibrium scenario.
Q6. Discuss the use of transmission angle and toggle configuration of the four-bar mechanism.
Q7. What do you understand by wrist singularity, and work space boundary \& interior singularity?
Q8. Discuss the use and advantages of closed loop mechanism over open loop.
Q9. Discuss the steps required to obtain the matrix ${ }^{i-1} T_{i}$
Q10. What is a knot point?
Q10. Determine the inverse of ${ }^{i-1} T_{i}$ matrix
Q11. Assign Frames to the following Arm using DH convention. Identify the type of joints and DOF.

Q12. Derive the expression for $\tau=J^{T} F$

Birla Institute of Technology \& Science, Pilani First Semester 2022-23 (Comprehensive Examination - Regular)
 ME G511 (Mechanism and Robotics)
 Weightage - 40\% (40M)
 Date: 27/12/2022
 Duration-3 hrs

(Every symbol and abbreviation has its usual meaning as per the text book)

Two Hour
PART B
25 Marks

Q1. Consider the rotation matrix
$R=\frac{1}{3}\left(\begin{array}{ccc}-2 & 2 & -1 \\ 2 & 1 & -2 \\ -1 & -2 & -2\end{array}\right)$
Find the axis-angle (k, θ) that provide the desired orientation.
Q2. Write a MATLAB program to calculate the inverse homogenous transformation ${ }^{A} T_{B}^{-1}={ }^{B} T_{A}$ using symbolic formula.

Q3. (a) For the arm shown in the Figure (3-DOF arm) determine the kinematic model $[2+3]$
(b) Determine the inverse kinematic model of the given arm
(c) A payload (W) is acting at the end-effector then determine the torque acting at the joints to be in static equilibrium.
(d) Assume link mass is at the CG, determine M11, M12 and M13 coefficients for the M matrix.
(e) Determine gravity coefficients G1 and G2. [2]

Q4. (a) In a system the inertial load, J_{L}, varies between 4 and $5 \mathrm{Kg}-\mathrm{m}^{2}$. The rotor inertia is $J \mathrm{~m}=0.01 \mathrm{Kg}-\mathrm{m}^{2}$, and the gear ratio is $\eta=10$. The system possesses unmodeled resonances at $8.0,12.0$, and $20.0 \mathrm{rad} / \mathrm{sec}$. Design a controller and determine the values of Kp and Kv such that the system is never underdamped and never excites resonances, but is as stiff as possible.
(b) A single-link robot with a rotary joint is motionless at $\theta=-5^{0}$. It is desired to move the joint in a smooth manner to $\theta=80^{\circ}$ in 4 seconds and stop smoothly. Compute the corresponding parameters of a linear trajectory with parabolic blends.

