Birla Institute of Technology & Science, Pilani

First Semester 2022-23 (Comprehensive Examination - Regular)			
ME G511 (Mechanism and Robotics)		Weightage - 40% (40M)	
Date: 27/12/2022		Duration - 3 hrs	
(Every symbol and abbreviation has its usual meaning as per the text book)			
One Hour	PART A		15 Marks
Q1. What do you mean by normalized time trajectory planning with cubic polynomial.Determine the unknown coefficients in the polynomial.[1]Q2. Explain the impact of Gearbox on controllability of the One DOF link actuator system.[1]			
Q3. How arm is different from handling objects. Q4. Discuss differences between parameter method to represent the Q5. Discuss the importance of inv multibody systems. How is it di equilibrium scenario. Q6. Discuss the use of transmis mechanism. Q7. What do you understand by v singularity? Q8. Discuss the use and advantag Q9. Discuss the steps required to o Q10. What is a knot point? Q10. Determine the inverse of $i^{-1}T_{i}$ Q11. Assign Frames to the followin	n equivalent axis –angle e orientation of an object. verse dynamics and forwar fferent from the torque rel ssion angle and toggle con wrist singularity, and work es of closed loop mechanism obtain the matrix $i^{-1}T_i$	representation a d dynamic appro ation obtained fr figuration of the space boundary n over open loop.	adancy on [1] and Euler [1] baches for rom static [1] e four-bar [1] & interior [1] & [1] [1] [1] [2]
Q11. Assign Frames to the followir and DOF.	ig Arm using DH convention	n. Identify the typ	[2]

Q12. Derive the expression for $\tau = J^T F$

[2]

\$\$\$\$\$

Birla Institute of Technology & Science, Pilani First Semester 2022-23 (Comprehensive Examination - Regular) ME G511 (Mechanism and Robotics) Date: 27/12/2022 Duration - 3 hrs

(Every symbol and abbreviation has its usual meaning as per the text book)

Two Hour

25 Marks

[2]

Q1. Consider the rotation matrix

 $R = \frac{1}{3} \begin{pmatrix} -2 & 2 & -1 \\ 2 & 1 & -2 \\ -1 & -2 & -2 \end{pmatrix}$

Find the axis-angle (k,θ) that provide the desired orientation.

Q2. Write a MATLAB program to calculate the inverse homogenous transformation ${}^{A}T_{B}^{-1} = {}^{B}T_{A}$ using symbolic formula. [2]

Q3. (a) For the arm shown in the Figure (3-DOF arm)determine the kinematic model[2+3](b) Determine the inverse kinematic model of thegiven arm[3](c) A payload (W) is acting at the end-effector thendetermine the torque acting at the joints to be in staticequilibrium.[3]

(d) Assume link mass is at the CG, determine M11,

M12 and M13 coefficients for the M matrix. [4]

(e) Determine gravity coefficients G1 and G2. [2]

Q4. (a) In a system the inertial load, J_L , varies between 4 and 5 Kg-m². The rotor inertia is Jm = 0.01Kg-m², and the gear ratio is $\eta = 10$. The system possesses unmodeled resonances at 8.0, 12.0, and 20.0 rad/sec. Design a controller and determine the values of Kp and Kv such that the system is never underdamped and never excites resonances, but is as stiff as possible. [3]

(b) A single-link robot with a rotary joint is motionless at $\theta = -5^{\circ}$. It is desired to move the joint in a smooth manner to $\theta = 80^{\circ}$ in 4 seconds and stop smoothly. Compute the corresponding parameters of a linear trajectory with parabolic blends. [2]

\$\$\$\$%%%%%\$\$\$\$