BITS Pilani K.K. Birla Goa Campus
 Mid-semester Examination
 First Semester 2022-2023

ME G511- Mechanisms \& Robotics

Note:

- The exam is open-book. Students are allowed to carry 1 textbook, 1 notebook and bound/stapled printouts of lecture slides. Loose sheets are not allowed in the exam hall.
- All variables, constants, and annotations carry the same meaning mentioned in the class.
- If necessary, make reasonable assumptions for solving the problems and state them clearly in the answer sheet.

1. Figure 1 shows a gantry type PRR robot with coordinate frames attached to the links. Transformation matrices for the frames are given below.

Figure 1: PRR robot for Qn. 1
${ }^{0}[T]_{1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{1}[T]_{2}=\left[\begin{array}{cccc}C_{2} & -S_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{2}[T]_{3}=\left[\begin{array}{cccc}C_{3} & -S_{3} & 0 & l \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{3}[T]_{\text {Tool }}=\left[\begin{array}{cccc}1 & 0 & 0 & l \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(a) (10 marks) Calculate the linear velocity ${ }^{i} \mathbf{v}_{i}$ and angular velocity ${ }^{i} \omega_{i}$ where $i=\{1,2,3$, Tool $\}$
(b) (10 marks) Find the manipulator Jacobian matrix, ${ }^{0}[J(\mathbf{q})]_{\text {Tool }}$
(c) (5 marks) Calculate the static forces/torques required at the links for holding a mass m at the tool point.
(d) (5 marks) Write the Jacobian submatrix, ${ }^{0}\left[J^{\prime}(\mathbf{q})\right]_{\text {Tool }}$ such that $\left[{ }^{0} \dot{x}_{\text {Tool }},{ }^{0} \dot{z}_{\text {Tool }},{ }^{0} \omega_{y_{\text {Tool }}}\right]^{T}={ }^{0}\left[J^{\prime}(\mathbf{q})\right]_{\text {Tool }} \dot{\mathbf{q}}$. Find the singular configuration(s) of the robot by analysing ${ }^{0}\left[J^{\prime}(\mathbf{q}]_{\text {Tool }}\right.$
2. The RPRR robot shown in Figure 2 is in home position.

Figure 2: RPRR robot for Qn. 2
(a) (10 marks) Draw the link-coordinate diagram and populate the DH table.
(b) (10 marks) Find the transformation matrix ${ }^{0}[T]_{T o o l}$ in terms of joint variables and constants.
3. (10 marks) One of the joints in an industrial robot is directly driven by a DC servo motor with position control(as shown in Figure 3). The robot attains singular configuration if the joint angle θ is at 63°. To avoid singularity, the user always prescribes the value of joint rotation to be less than or equal to 60°. If the closed loop transfer function of the DC motor position controller is $\frac{\theta}{\theta_{d}}=\frac{225}{s^{2}+K s+225}$, what should be the minimum value of controller gain K to ensure that the singular configuration is always avoided for a step input?

Figure 3: Figure for Qn. 3

