Birla Institute of Technology \& Science, Pilani First Semester 2023-24 (Mid-semester Examination - Regular)

Q1.
(a) For a Four bar mechanism with the ground link dand a, b, c, being the link lengths including angles θ_{2}, θ_{3}, and θ_{4}. Determine the relation between input and output (θ_{2} and θ_{4},) if the second joint of the mechanism is powered (θ_{3}, is a variable).
(b) Determine the rotation matrix $R_{R P Y}(\phi, \theta, \psi)$ and discuss the steps to determine the value of ϕ, θ, ψ when the $R_{R P Y}(\phi, \theta, \psi)$ is known.
Q2.
(a) Refer to the figure shown and provide the various homogenous transformation matrices required to obtain the absolute definition of task $\left\{\mathrm{RF}_{\mathrm{T}}\right\}$ with respect to world frame $\left\{\mathrm{RF}_{\mathrm{w}}\right\}$.
(b) What are the steps required to obtain ${ }^{i-1} T_{i}$ matrix if the D-H link and joint parameters of a robot are $a_{i}, \alpha_{i}, \theta_{i}, d_{i}$.? Then determine the $\left({ }^{i-1} T_{i}\right)^{-1}$.
(c) Consider the matrix

$R F_{W}$

$$
R(k, \theta)=\left[\begin{array}{ccc}
0 & -\frac{\sqrt{3}}{2} & 1 / 2 \tag{3}\\
1 / 2 & -\frac{\sqrt{3}}{4} & -3 / 4 \\
\frac{\sqrt{3}}{2} & 1 / 4 & \frac{\sqrt{3}}{4}
\end{array}\right] \text { Determine the equivalent axis } \mathrm{k} \text { and the angle } \theta \text {.Discuss the }
$$

importance of Unit quaternion over this representation
Q3. For the 3 DOF TRP manipulator derive the Kinematic Model using DH convention. Also determine the joint parameters for the known task space information.
(a) Assign frames to the arm
(b) Determine link and joint parameters
(c) Obtain KM and Inverse KM.
(d) If another robot is placed at $(L, 0,0)$ and used to hold the object with the current one with same orientation then what will be its transformation matrix.
[2+2+6+2]

