Birla Institute of Technology & Science, Pilani First Semester 2023-24 (Mid-semester Examination - Regular)

ME (Date:	G511 (Mechanism and Robotics) 13/10/2023 OPEN BOOK	Total Marks: 30 Total Duration 1.5hrs
Q1. (a)	For a Four bar mechanism with the ground link d and a, b, c, being the θ_2, θ_3 , and θ_4 . Determine the relation between input and output	link lengths including angles ($ heta_2$ and $ heta_4$,) if the second
	joint of the mechanism is powered ($ heta_3$, is a variable).	[6]
(b)	Determine the rotation matrix $R_{_{RPY}}(\phi, heta,\psi)$ and discuss the steps	to determine the value of
	$\phi, heta, \psi$ when the $R_{_{RPY}}(\phi, heta, \psi)$ is known.	[4]
Q2.		
(a)	Refer to the figure shown and provide the various homogenous transformation matrices required to obtain the absolute definition of task { RF_T } with respect to world frame { RF_W }. [3]	y_E RF_E z_E RF_T
(b)	What are the steps required to obtain ${}^{i-1}T_i$ matrix	
	if the D-H link and joint parameters of a robot are \uparrow	
	$a \alpha \theta d$? Then determine the $(i-1T)^{-1}$ [3]	
(c)	Consider the matrix RF_W	
(C)	$R(k,\theta) = \begin{bmatrix} 0 & -\frac{\sqrt{3}}{2} & 1/2 \\ 1/2 & -\frac{\sqrt{3}}{4} & -3/4 \\ \frac{\sqrt{3}}{2} & 1/4 & \frac{\sqrt{3}}{4} \end{bmatrix}$ Determine the equivalent axis k and	nd the angle $ heta$.Discuss the
	importance of Unit quaternion over this representation	[3]
Q3. F Kinem deterr space (a (b (c) (d	for the 3 DOF TRP manipulator derive the natic Model using DH convention. Also mine the joint parameters for the known task information.) Assign frames to the arm) Determine link and joint parameters) Obtain KM and Inverse KM.) If another robot is placed at (L,0,0) and used to hold the object with the current one with same orientation then what will be its transformation matrix. $[2+2+6+2]$	